Skip to main content
Log in

Compromise in combinatorial vote

  • Original Paper
  • Published:
Social Choice and Welfare Aims and scope Submit manuscript

Abstract

We consider collective choice problems where the set of social outcomes is a Cartesian product of finitely many finite sets. Each individual is assigned a two-level preference, defined as a pair involving a vector of strict rankings of elements in each of the sets and a strict ranking of social outcomes. A voting rule is called (resp. weakly) product stable at some two-level preference profile if every (resp. at least one) outcome formed by separate coordinate-wise choices is also an outcome of the rule applied to preferences over social outcomes. We investigate the (weak) product stability for the specific class of compromise solutions involving q-approval rules, where q lies between 1 and the number I of voters. Given a finite set \(\mathcal {X}\) and a profile of I linear orders over \(\mathcal {X}\), a q-approval rule selects elements of \(\mathcal {X}\) that gathers the largest support above q at the highest rank in the profile. Well-known q-approval rules are the Fallback Bargaining solution (\(q=I\)) and the Majoritarian Compromise (\(q=\left\lceil \frac{I}{2}\right\rceil\)). We assume that coordinate-wise rankings and rankings of social outcomes are related in a neutral way, and we investigate the existence of neutral two-level preference domains that ensure the weak product stability of q-approval rules. We show that no such domain exists unless either \(q=I\) or very special cases prevail. Moreover, we characterize the neutral two-level preference domains over which the Fallback Bargaining solution is weakly product stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The citizens of California are familiar with the organization of multiple referendum. For instance, 12 ballot measures were certified to appear on the ballot for the election on November 3, 2020. Issues at stake covered a vast set of different topics, such as restoring the right to vote to people convicted of felonies who are on parole, expanding local governments’ power to use rent control, or changing tax assessment transfers and inheritance rules. A debate is currently held in France about the pros and cons of multiple referendum.

  2. A multiple referendum corresponds to the special case where all sets \(\mathcal {A}_{1},\ldots ,\mathcal {A}_{M}\) contain only two alternatives.

  3. The reader may refer to Lang and Xia (2016) for a review of voting methods that overcome the difficulty created by non-separable preferences.

  4. The Hamming distance between two outcomes is the number of coordinates they disagree upon.

  5. An interesting question that we ignore here is the role played by the agenda in the decision process, i.e., the order with which issues, or coordinates, are successively debated. Unless preferences are separable across coordinates, coordinate-wise preferences may depend on the chosen agenda. As we do not retain separability at first, our approach amounts to assuming that coordinate-wise and outcome-wise preferences are reported before the agenda is known.

  6. While this assumption is needed for our results, we will occasionally, for the sake of simplicity, consider examples with only two alternatives per coordinate.

  7. An outcome preference \(P^{i}\in \mathcal {L}_{\mathcal {A}}\) is separable if \(\forall \overrightarrow{a},\overrightarrow{b}\in \mathcal {A}\), and \(\forall m\in \mathcal {M}\), \(\forall c_{m},d_{m}\in \mathcal {A}_{m}\), we have \((c_{m}, \overrightarrow{a}_{-m})\) \(P^{i}\) \((d_{m},\overrightarrow{a}_{-m})\) if and only if \((c_{m},\overrightarrow{b}_{-m})\) \(P^{i}\) \((d_{m},\overrightarrow{b} _{-m})\).

  8. If outcomes (resp. coordinates) are interpreted as committees (resp. designated seats), this procedure amounts to simultaneously selecting candidates seat by seat from voters’ rankings of candidates running for that seat. Another possibility is iterative voting, where seat-wise choices are made in some order, the choice for one seat being publicly known before the choice is made for the next seat (see Meir 2017 for a review of iterative voting).

  9. Studies involving two different preference levels usually involve the use of a preference extension. For a rich review of preference extensions that link preferences over alternatives to preferences over sets of alternatives, the reader may refer to Barberà et al. (2004). The importance of preference extensions is pointed out in many studies investigating the consistency between alternative-based and set-based collective choice (see Kaymak and Sanver 2003; Kamwa and Merlin 2018). In the case where outcomes are rankings rather than sets of alternatives, preference extensions play a critical role for the incentive compatibility of Arrovian aggregation (Bossert and Storcken 1992; Bossert and Sprumont 2014; Athanasoglou 2016). In their analysis of product stability for Condorcet rules, in a framework similar to the present one, where outcomes are designated-post committees, Aslan et al. (2021) also use the concept of preference extension, which maps rankings of seat-wise candidates to rankings of committees.

  10. Our terminology departs from the standard one in study of social choice where domains, such as the one characterized by single-peakedness, involve profiles of preference relations.

  11. In Aslan et al. (2021), elements of \(\mathcal {L}_{\mathcal {R}}\) are called preference extensions. While the formalization of preference domains differs between their paper and this one, it essentially allows for the same interpretation.

  12. An outcome preference P \(\in \mathcal {L}_{\mathcal {A}}\) is separable w.r.t. \(p=(p_{m})_{m\in \mathcal {M}}\in \mathbb {L}\) if and only if \(\forall \overrightarrow{a}\in \mathcal {A}\), \(\forall m\in \mathcal {M}\), \(\forall a_{m},b_{m}\in \mathcal {A}_{m}\), we have \((a_{m},\overrightarrow{a}_{-m})\) P \((b_{m},\overrightarrow{a}_{-m})\Leftrightarrow a_{m}\) \(p_{m}\) \(b_{m}\).

  13. The first column in \({\pi }\) should be read as follows: The preference of each of the 4 voters \(i=1,\ldots ,4\) is the linear order \([abcd]\in \mathcal {L}_{\mathcal {X}}\).

  14. Profiles in matrix form are completed by a column indicating the position in each voter’s ranking of elements that matter in the reasoning. Cells that are left blank can be arbitrarily filled by one element among the remaining ones.

  15. Observe that Theorem 2 remains valid with only two alternatives per coordinate.

  16. The reader will check that \(F_{q}[{\delta }(\mathbf {p})]=\{(a_{1}, \vec {b}_{-1}),(b_{1},\vec {a}_{-1})\}\) if I is even and \(F_{q}[ {\delta }(\mathbf {p})]=\{(a_{1},\vec {b}_{-1})\}\) if I is odd.

  17. Observe that product stability prevails in all cases but the one where the three voters disagree on their first-best element in each of the coordinates.

  18. Other studies investigating preference domains that ensure some consistency between sequential and direct outcomes in the context of multiple referendum are due to Laffond and Lainé (2006) and Cuhadaroglu and Lainé (2012).

  19. It is easy to see that \(r_{m}^{\prime }=1\) is possible for \(m\le m^{*}\) but causes no change in the proof other than one row being deleted in the corresponding table(s).

References

  • Aslan F, Dindar H, Lainé J (2021) When are committees of Condorcet winners Condorcet winning committees? Rev Econ Design (2021). https://doi.org/10.1007/s10058-021-00268-1

  • Athanasoglou S (2016) Strategyproof and efficient preference aggregation with Kemeny based criteria. Games Econom Behav 95:156–167

    Article  Google Scholar 

  • Barberà S, Bossert W, Pattanaik PK (2004) Ranking sets of objects. In: Barberà S, Hammond PJ, Seidl C (eds) Handbook of utility theory. Springer, Boston

    Chapter  Google Scholar 

  • Benoît JP, Kornhauser LA (2010) Only dictatorship is efficient. Games Econom Behav 70:261–270

    Article  Google Scholar 

  • Bezembinder T, van Acker P (1985) The Ostrogorski paradox and its relation to nontransitive choice. J Math Sociol 11:131–58

    Article  Google Scholar 

  • Bossert W, Sprumont Y (2014) Strategy-proof preference aggregation: possibilities and characterizations. Games Econ Behav 85:109–126

    Article  Google Scholar 

  • Bossert W, Storcken T (1992) Strategy-proofness of social welfare functions: the use of the Kemeny distance between preference orderings. Soc Choice Welfare 9:345–360

    Article  Google Scholar 

  • Brams S, Kilgour DM (1998) The paradox of multiple elections. Soc Choice Welfare 15:211–236

    Article  Google Scholar 

  • Brams S, Kilgour DM (2001) Fallback bargaining. Group Decis Negot 10:287–316

    Article  Google Scholar 

  • Casella A, Macé A (2021) Does vote trading improve welfare? Ann Rev Econ 13(1):57–86

    Article  Google Scholar 

  • Cuhadaroglu T, Lainé J (2012) Pareto efficiency in multiple referendum. Theor Decis 72:525–536

    Article  Google Scholar 

  • Daudt H, Rae D (1976) The Ostrogorski paradox: a peculiarity of compound majority decision. Eur J Polit Res 4:391–398

    Article  Google Scholar 

  • Deb R, Kelsey D (1987) On constructing a generalized Ostrogorski paradox: necessary and sufficient conditions. Math Soc Sci 14:161–174

    Article  Google Scholar 

  • Hollard G, Le Breton M (1996) Logrolling and a McGarvey theorem for separable tournaments. Soc Choice Welfare 13:451–455

    Article  Google Scholar 

  • Hurwicz L, Sertel MR (1999) Designing mechanisms, in particular for electoral systems: the majoritarian compromise. In: Sertel MR (ed) Contemporary economic issues. International Economic Association Series. Palgrave Macmillan, London

    Google Scholar 

  • Kamwa E, Merlin V (2018) Coincidence of Condorcet committees. Soc Choice Welfare 50:171–189

    Article  Google Scholar 

  • Kaymak B, Sanver MR (2003) Sets of alternatives as Condorcet winners. Soc Choice Welfare 20:477–494

    Article  Google Scholar 

  • Laffond G, Lainé J (2006) Single-switch preferences and the Ostrogorski paradox. Math Soc Sci 52:49–66

    Article  Google Scholar 

  • Lang J, Xia L (2016) Voting on combinatorial domains. In: Brandt F, Conitzer V, Endriss U, Lang J, Procaccia AD (eds) Handbook of computational social choice. Cambridge University Press, Cambridge, pp 197–221

    Chapter  Google Scholar 

  • Meir R (2017) Iterative voting. In: Endriss U (ed) Trends in computational social choice, chapter 4. AI Access, pp 69–86

  • Núñez M, Sanver MR (2021) On the subgame perfect implementability of voting rules. Soc Choice Welfare 56(2):421–441

    Article  Google Scholar 

  • Özkal-Sanver I, Sanver MR (2006) Ensuring Pareto optimality by referendum voting. Soc Choice Welfare 27:211–219

    Article  Google Scholar 

  • Sertel MR, Yilmaz B (1999) The majoritarian compromise is majoritarian optimal and subgame perfect implementable. Soc Choice Welfare 16:615–627

    Article  Google Scholar 

  • Vidu L (1999) An extension of a theorem on the aggregation of separable preferences. Soc Choice Welfare 16:159–167

    Article  Google Scholar 

  • Vidu L (2002) Majority cycles in a multidimensional setting. Econ Theor 20:373–386

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to two reviewers and the associate editor for their valuable comments and suggestions. This research has been partially funded by the BILGI Research Development Innovation Programme, POlarization viewed from SOcial choice Perspective (POSOP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Lainé.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Appendix: Proof of theorem 1

Appendix A Appendix: Proof of theorem 1

1.1 A.1 Proof of sufficiency part

We want to show that for any \(\widetilde{q}\in \mathcal {L}_{\mathcal {M}}\), \(F_{I}\) is weakly product stable at \(\delta ^{\widetilde{q}}\).

Take any \(\widetilde{q}\in \mathcal {L}_{\mathcal {M}}\). Up to a reshuffling of coordinates \(m\in \mathcal {M}\), one can assume w.l.o.g. that \(\widetilde{q }=[12\ldots M]\). Suppose that there exists a coordinate profile \(\mathbf {p}\) such that \([\prod _{m\in \mathcal {M}}F_{I}(\mathbf {p}_{m})]\cap F_{I}[{ \delta }(\mathbf {p})]=\emptyset\), where \({\delta }=(\delta ^{ \widetilde{q}},\ldots ,\delta ^{\widetilde{q}}).\) Take any \(\overrightarrow{b }=(b_{1},\ldots ,b_{M})\in \prod _{m\in \mathcal {M}}F_{I}(\mathbf {p}_{m})\) and \(\overrightarrow{a}=(a_{1},\ldots ,a_{M})\in F_{I}[{\delta }( \mathbf {p})]\). Define \(m_{1}\in \mathcal {M}\) as the coordinate with the lowest index such that \(a_{m_{1}}\ne b_{m_{1}}\). Hence, we can write \(\overrightarrow{a}=(\overrightarrow{b}_{<m_{1}},\overrightarrow{a}_{\ge m_{1}})\). Moreover, define \(r^{*}\) as the I-value of \(\overrightarrow{b }\) at \({\delta }(\mathbf {p})\). By definition of the I-value, \(r^{*}\) is the highest rank given to \(\overrightarrow{b}\) by some linear order in \({\delta }(\mathbf {p})\). Pick \(i^{*}\in \mathcal {I}\) for whom \(\delta ^{\widetilde{q}}(p^{i^{*}})(\overrightarrow{b})=r^{*}\). Since \(p_{m_{1}}^{i^{*}}\) \(\in \mathcal {L}_{\mathcal {A}_{m_{1}}}\) and \(a_{m_{1}}\ne b_{m_{1}}\), we have \(p_{m_{1}}^{i^{*}}(b_{m_{1}})\ne p_{m_{1}}^{i^{*}}(a_{m_{1}})\). Moreover, since \(\overrightarrow{a}\in F_{I}[{\delta }(\mathbf {p})]\) and whereas \(\overrightarrow{b}\mathbf { \notin }F_{I}[{\delta }(\mathbf {p})]\), \(V_{I}[\overrightarrow{a}, {\delta }(\mathbf {p})]\), that is the I-value of \(\overrightarrow{a}\) in \({\delta }(\mathbf {p})\) is strictly less than \(r^{*}\). It follows from the definition of \(\delta ^{\widetilde{q}}\) that \(p_{m_{1}}^{i^{*}}(a_{m_{1}})<p_{m_{1}}^{i^{*}}(b_{m_{1}})\). Now, pick any \(i\ne i^{*}\) and suppose that \(p_{m_{1}}^{i}(a_{m_{1}})>p_{m_{1}}^{i^{*}}(b_{m_{1}})\). By the definition of \(\delta ^{\widetilde{q}}\), we get \(\delta ^{\widetilde{q} }(p^{i})(\overrightarrow{a})>\delta ^{\widetilde{q}}(p^{i^{*}})( \overrightarrow{b})=r^{*}\). As this would imply \(V_{I}[\overrightarrow{a},{\delta }(\mathbf {p})]>\) \(r^{*}\), we contradict \(\overrightarrow{ a}\) \(\mathbf {\in }\) \(F_{I}[{\delta }(\mathbf {p})]\). Hence, we have shown that (1) \(p_{m_{1}}^{i^{*}}(a_{m_{1}})<p_{m_{1}}^{i^{*}}(b_{m_{1}})\) and (2) \(p_{m_{1}}^{i}(a_{m_{1}})\le p_{m_{1}}^{i^{*}}(b_{m_{1}})\) for all \(i\in \mathcal {I}\setminus \{i^{*}\}\). Observe that \(p_{m_{1}}^{i}(a_{m_{1}})<p_{m_{1}}^{i^{*}}(b_{m_{1}})\) for all \(i\in \mathcal {I}\) contradicts with \(b_{m_{1}}\in F_{I}(\mathbf {p}_{m_{1}})\). Thus, \(p_{m_{1}}^{i}(a_{m_{1}})=p_{m_{1}}^{i^{*}}(b_{m_{1}})\) for some \(i\in \mathcal {I}\), which in turn implies \(a_{m_{1}}\in F_{I}(\mathbf {p} _{m_{1}})\).

Next consider \(\overrightarrow{b}^{(1)}=(b_{1}^{(1)},\ldots ,b_{M}^{(1)})=(a_{m_{1}},\overrightarrow{b}_{-m_{1}})\). Since \(\overrightarrow{b}\in \prod _{m\in \mathcal {M}}F_{I}(\mathbf {p}_{m})\) and \(a_{m_{1}}\in F_{I}(\mathbf {p}_{m_{1}})\), then \(\overrightarrow{b}^{(1)}\in \prod _{m\in \mathcal {M}}F_{I}(\mathbf {p}_{m})\). All is done if \(\overrightarrow{b}^{(1)}\in F_{I}[{\delta }(\mathbf {p})]\). Suppose that \(\overrightarrow{b}^{(1)}\notin F_{I}[{\delta }(\mathbf {p})]\). Consider again \(\overrightarrow{a}\) and define \(m_{2}\in \mathcal {M}\) as the coordinate with the lowest index \(\overrightarrow{a}\) and \(\overrightarrow{b} ^{(1)}\) disagree upon. By construction, we have \(m_{2}>m_{1}\). Hence, we can write \(\overrightarrow{a}=(\overrightarrow{b}_{<m_{2}}^{(1)},\overrightarrow{ a}_{\ge m_{2}})\in F_{I}[{\delta }(\mathbf {p})]\). By applying to \(m_{2}\) the same argument as the one for \(m_{1}\), we get \(a_{m_{2}}\in F_{I}( \mathbf {p}_{m_{2}})\). This shows that \(\overrightarrow{b}^{(2)}=(a_{m_{2}}, \overrightarrow{b}_{-m_{2}}^{(1)})\in \prod _{m\in \mathcal {M}}F_{I}(\mathbf {p }_{m})\). By replicating the same argument, and because of the finiteness of \(\mathcal {M}\), there must exist \(T\le M\) such that \(\overrightarrow{b}^{(T)}= \overrightarrow{a}\). By construction, we have \(\overrightarrow{b} ^{(T)}=(a_{m_{T}},\overrightarrow{b}_{-m_{T}}^{(T-1)})\in \prod _{m\in \mathcal {M}}F_{I}(\mathbf {p}_{m})\). Since \(\overrightarrow{a}\in F_{I}[ {\delta }(\mathbf {p})]\), then \([\prod _{m\in \mathcal {M}}F_{I}(\mathbf { p}_{m})]\cap F_{I}[{\delta }(\mathbf {p})]\ne \emptyset\), which shows that \(F_{I}\) is weakly product stable at \(\delta ^{\widetilde{q}}\).

1.2 A.2 Proof of necessity part

The proof of the necessity part is organized in two lemmas. The first one states that the weak product stability of \(F_{I}\) requires all voters to use a lexicographic preference.

Lemma 6

Let \(F_{I}\) be product stable over \(\mathcal {D}\). If \(I\ge I^{*}+3\), then \(\delta \in \mathcal {D}\) only if \(\delta =\delta ^{ \widetilde{q}}\) for some \(\widetilde{q}\in \mathcal {L}_{\mathcal {M}}\).

Proof

Let \(\mathcal {R}^{*}=\{R\in \mathcal {R}:R=(2,\overrightarrow{1}_{-m})\) for some \(m\in \mathcal {M}\}\). Take any \(\delta \in \mathcal {D}\). By Proposition 1, \(\delta\) is responsive. Write \(\delta |_{ \mathcal {R}^{*}}\) as \((2,\vec {1}_{-m_{M}})\) \(\delta |_{\mathcal {R}^{*}}\) \((2,\vec {1}_{-m_{M-1}})\) \(\delta |_{\mathcal {R}^{*}}\) \(\ldots\) \(\delta |_{\mathcal {R}^{*}}(2,\vec {1}_{-m_{2}})\) \(\delta |_{\mathcal {R} ^{*}}\) \((2,\vec {1}_{-m_{1}})\). Observe that responsiveness implies that \(\delta\) ranks \((2,\vec {1}_{-m_{M}})\) second in \(\mathcal {R}\). Moreover, define \(\widetilde{q}\in \mathcal {L}_{\mathcal {M}}\) by \(\widetilde{q} ^{-1}(n)=m_{n}\) for all \(n\in \mathcal {M}\). For notational simplicity, assume that \(\widetilde{q}=[1,2,\ldots ,M]\). Hence, \(\delta\) is responsive, ranks \(\vec {1}\) at top, \((2,\vec {1}_{-M})\) second and \(\delta |_{\mathcal {R} ^{*}}=[(2,\vec {1}_{-M}),(2,\vec {1}_{-(M-1)}),\ldots ,(2,\vec {1}_{-1})]\).

Suppose, towards a contradiction, that \(\delta \ne \delta ^{\widetilde{q}}\). Thus, there exist \(m^{*}\in \mathcal {M}\) and \(R,R^{\prime }\in \mathcal {R}\) with \(R=(R_{<m^{*}},r_{m^{*}},r_{m^{*}+1},\ldots ,r_{M})\), where \(R_{<m^{*}}=(\overset{m^{*}-1}{\overbrace{ r_{1},\ldots ,r_{m^{*}-1}})}\), \(R^{\prime }=\) \((R_{<m^{*}},r_{m^{*}}^{\prime },r_{m^{*}+1}^{\prime },\ldots ,r_{M}^{\prime })\) with \(r_{m^{*}}>r_{m^{*}}^{\prime }\), and R \(\delta\) \(R^{\prime }\).

Observe that, by the responsiveness of \(\delta\), we must have \(m^{*}<M\). Again by the responsiveness of \(\delta\), one can assume w.l.o.g. that \(r_{m}=1\) and \(r_{m}^{\prime }=A_{m}\) for all \(m\in \{m^{*}+1,\ldots ,M\}\). Thus,

\(R=(R_{<m^{*}},r_{m^{*}},1,\ldots ,1)\), where \(R_{<m^{*}}=( \overset{m^{*}-1}{\overbrace{r_{1},\ldots ,r_{m^{*}-1}})}\),

\(R^{\prime }=\) \((R_{<m^{*}},r_{m^{*}}^{\prime },A_{m^{*}+1},\ldots ,A_{M})\) with \(r_{m^{*}}>r_{m^{*}}^{\prime }\),

R \(\delta\) \(R^{\prime }\).

We distinguish between two cases.


Case 1: \(r_{m^{*}}<A_{m^{*}}\).

Define

\(\tilde{R}=(R_{<m^{*}},r_{m^{*}}+1,1,\ldots ,1)\),

\(\tilde{R}^{\prime }=(R_{<m^{*}},r_{m^{*}}^{\prime }+1,A_{m^{*}+1},\ldots ,A_{M})\).


Case 1a: \(\tilde{R}\) \(\delta\) \(\tilde{R}^{\prime }\).

Consider a coordinate 4-voter profile \(\mathbf {p}\) having the general form below:

\(\forall m<m^{*}\), \(\mathbf {p}_{m}=\left( \begin{array}{ccccc} Rank &{} p_{m}^{1} &{} p_{m}^{2} &{} p_{m}^{3} &{} p_{m}^{4} \\ \hline 1 &{} \cdot &{} \cdot &{} \cdot &{} a_{m} \\ r_{m}=r_{m}^{\prime } &{} a_{m} &{} a_{m} &{} a_{m} &{} \cdot \end{array} \right)\),

\(\mathbf {p}_{m^{*}}=\left( \begin{array}{ccccc} Rank &{} p_{m^{*}}^{1} &{} p_{m^{*}}^{2} &{} p_{m^{*}}^{3} &{} p_{m^{*}}^{4} \\ \hline 1 &{} \cdot &{} \cdot &{} \cdot &{} a_{m^{*}} \\ r_{m^{*}}^{\prime } &{} a_{m^{*}} &{} a_{m^{*}} &{} b_{m^{*}} &{} \cdot \\ r_{m^{*}}^{\prime }+1 &{} b_{m^{*}} &{} b_{m^{*}} &{} \cdot &{} b_{m^{*}} \\ r_{m^{*}}+1 &{} \cdot &{} \cdot &{} a_{m^{*}} &{} \cdot \end{array} \right)\),

\(\forall m>m^{*}\), \(\mathbf {p}_{m}=\left( \begin{array}{ccccc} Rank &{} p_{m}^{1} &{} p_{m}^{2} &{} p_{m}^{3} &{} p_{m}^{4} \\ \hline 1 &{} \cdot &{} \cdot &{} a_{m} &{} a_{m} \\ 2 &{} a_{m} &{} \cdot &{} \cdot &{} \cdot \\ A_{m} &{} \cdot &{} a_{m} &{} \cdot &{} \cdot \end{array} \right)\)Footnote 19.

Let \(\overrightarrow{a}=(a_{1},\ldots ,a_{M}),\overrightarrow{b} =(b_{1},\ldots ,b_{M}),\overrightarrow{c}=(b_{m^{*}},\overrightarrow{a} _{-m^{*}})\in \mathcal {A}\), \(\mathcal {A}^{\prime }=\{(b_{m^{*}}, \overrightarrow{\alpha }_{-m^{*}}):\overrightarrow{\alpha }\in \mathcal {A }\}{\setminus }\{\overrightarrow{c}\}\), and consider a coordinate profile \(\overline{\mathbf {p}}\) involving \(I\ge \prod _{m\in \mathcal {M}\backslash \{m^{*}\}}A_{m}\) \(+3\) voters and such that:

(1) \(\forall i\in \{1,2,3\}\), \(\overline{p}^{i}=p^{i}\),

(2) \(\forall i\in \{4,\ldots ,I\}\), \(\overline{p}^{i}\) agrees with \(p^{4}\) on the ranks given to \(a_{m}\) for all m, \(\overline{p}^{i}\) agrees with \(p^{4}\) on the rank given to \(b_{m^{*}}\), and \(\forall c_{m^{*}}\in \mathcal {A}_{m^{*}}{\setminus }\{a_{m^{*}},b_{m^{*}}\}\) there exists \(i(c_{m^{*}})\in \{4,\ldots ,I\}\) such that \(r[c_{m^{*}}, \overline{p}^{i(c_{m^{*}})}]=A_{m^{*}}\),

(3) \(\forall \overrightarrow{d}\in \mathcal {A}^{\prime }\), there exists \(i( \overrightarrow{d})\in \{4,\ldots ,I\}\) such that \(R[\overrightarrow{d}, \overline{p}^{i(\overrightarrow{d})}]=\tilde{R}^{\prime }\).

As \(I^{*}\ge \prod _{m\in \mathcal {M}{\setminus }\{m^{*}\}}A_{m}\), condition (3) can be satisfied. Moreover, we have \(\prod _{m\in \mathcal {M} }F_{I}(\overline{\mathbf {p}})\subseteq \mathcal {A}^{\prime }\cup \{ \overrightarrow{c}\}\) and \(\overrightarrow{c}\in \prod _{m\in \mathcal {M} }F_{I}(\overline{\mathbf {p}})\). Table 1 gives the rank vectors of \(\overrightarrow{a}\) and \(\overrightarrow{c}\) for each coordinate preference \(\overline{p}^{i}\):

Table 1 The rank vectors of \(\overrightarrow{a}\) and \(\overrightarrow{c}\) in Case 1a

Pick \({\delta }=(\delta ,\ldots ,\delta )\). Observe that the responsiveness of \(\delta\) implies \(R(\overrightarrow{c}{\small ,}\overline{ p}^{i})\) \(\delta\) \(R(\overrightarrow{c},\overline{p}^{2})\) for all \(i\ne 2\). Hence \(V_{I}[\overrightarrow{c},{\delta }(\overline{\mathbf {p}} \mathbf {)}]\), the I-value of \(\overrightarrow{c}\) in \({\delta }( \overline{\mathbf {p}}\mathbf {)}\), is equal to \(r[\overrightarrow{c},\delta ( \overline{p}^{2})]\). Similarly, the responsiveness of \(\delta\) implies \(R( \overrightarrow{a},\overline{p}^{i})\) \(\delta\) \(R(\overrightarrow{a}, \overline{p}^{j})\) for all \(i\ge 4\) and all \(j<4\). Moreover, as \(A_{m}\ge 3\) for all \(m\in \mathcal {M}\), \(R(\overrightarrow{a},\overline{p}^{1})\) \(\delta\) \(R(\overrightarrow{a},\overline{p}^{2})\). Thus, \(V_{I}[ \overrightarrow{a},{\delta }(\overline{\mathbf {p}}\mathbf {)}]\in \{r[ \overrightarrow{a},\delta (\overline{p}^{2})],\) \(r[\overrightarrow{a},\delta (\overline{p}^{3})]\}\). By definition of case 1a, we have \(\tilde{R}\) \(\delta\) \(\tilde{R}^{\prime }\), and by responsiveness \(R^{\prime }\) \(\delta\) \(\tilde{R}^{\prime }\), which implies \(V_{I}[\overrightarrow{a},{ \delta }(\overline{\mathbf {p}}\mathbf {)}]<V_{I}[\overrightarrow{c},{ \delta }(\overline{\mathbf {p}}\mathbf {)}]\). Therefore, \(\overrightarrow{c} \notin F_{I}[{\delta }(\overline{\mathbf {p}}\mathbf {)]}\). Finally, pick any \(\overrightarrow{d}\in \mathcal {A}^{\prime }\). By definition of \(\overline{\mathbf {p}}\), we have \(V_{I}[\overrightarrow{d},{\delta }( \overline{\mathbf {p}}\mathbf {)}]\ge r[\overrightarrow{d},\overline{p}^{i( \overrightarrow{d})}]=r[\overrightarrow{c},\delta (\overline{p}^{2})]=V_{I}[ \overrightarrow{c},{\delta }(\overline{\mathbf {p}}\mathbf {)}]\). As \(V_{I}[\overrightarrow{a},{\delta }(\overline{\mathbf {p}}\mathbf {)} ]<V_{I}[\overrightarrow{c},{\delta }(\overline{\mathbf {p}}\mathbf {)}]\), we get \([\prod _{m\in \mathcal {M}}F_{I}(\mathbf {p})]{\cap }F_{I}[ {\delta }(\overline{\mathbf {p}}\mathbf {)]=\emptyset }\), in contradiction with the assumption that \(F_{I}\) is weakly stable over \(\mathcal {D}\).

Case 1b: \(\tilde{R}^{\prime }\) \(\delta\) \(\tilde{R}\).

We use an argument similar to the one for case 1a. Consider the coordinate 4-voter profile \(\mathbf {p}\) with the form below:

\(\forall m<m^{*}\), \(\mathbf {p}_{m}=\left( \begin{array}{c|cccc} Rank &{} p_{m}^{1} &{} p_{m}^{2} &{} p_{m}^{3} &{} p_{m}^{4} \\ \hline 1 &{} \cdot &{} \cdot &{} \cdot &{} a_{m} \\ r_{m}=r_{m}^{\prime } &{} a_{m} &{} a_{m} &{} a_{m} &{} \cdot \end{array} \right)\),

\(\mathbf {p}_{m^{*}}=\left( \begin{array}{c|cccc} Rank &{} p_{m}^{1} &{} p_{m}^{2} &{} p_{m}^{3} &{} p_{m}^{4} \\ \hline 1 &{} \cdot &{} \cdot &{} \cdot &{} a_{m^{*}} \\ r_{m^{*}}^{\prime } &{} \cdot &{} \cdot &{} a_{m^{*}} &{} \cdot \\ r_{m^{*}}^{\prime }+1 &{} a_{m^{*}} &{} \cdot &{} \cdot &{} \cdot \\ r_{m^{*}}+1 &{} \cdot &{} a_{m^{*}} &{} \cdot &{} \cdot \end{array} \right)\),

\(\forall m>m^{*}\), \(\mathbf {p}_{m}=\left( \begin{array}{c|cccc} Rank &{} p_{m}^{1} &{} p_{m}^{2} &{} p_{m}^{3} &{} p_{m}^{4} \\ \hline 1 &{} b_{m} &{} a_{m} &{} a_{m} &{} a_{m} \\ 2 &{} \cdot &{} b_{m} &{} b_{m} &{} b_{m} \\ A_{m} &{} a_{m} &{} \cdot &{} \cdot &{} \cdot \end{array} \right)\)

Let \(\overrightarrow{a}=(a_{1},\ldots ,a_{M}),\overrightarrow{b} =(b_{1},\ldots ,b_{M}),\overrightarrow{c}=(a_{\le m^{*}}, \overrightarrow{b}_{>m^{*}})\in \mathcal {A}\), \(\mathcal {A}^{\prime }=\{( \overrightarrow{\alpha }_{\le m^{*}},b_{>m^{*}}):\overrightarrow{ \alpha }\in \mathcal {A}\}{\setminus }\{\overrightarrow{c}\}\). Now, extend \(\mathbf {p}\) to coordinate profile \(\overline{\mathbf {p}}\) involving \(I\ge \prod _{m\le m^{*}}A_{m}\) \(+3\) voters and such that:

(1) \(\forall i\in \{1,2,3\}\), \(\overline{p}^{i}=p^{i}\),

(2) \(\forall i\in \{4,\ldots ,I\}\), \(\overline{p}^{i}\) agrees with \(p^{4}\) on the ranks given to \(a_{m}\) for all \(m\in \mathcal {M}\), \(\overline{p}^{i}\) agrees with \(p^{4}\) on the ranks given to \(b_{m}\) for all \(m>m^{*}\), and for all \(m>m^{*}\), \(\forall c_{m}\in \mathcal {A}_{m}{\setminus }\{a_{m},b_{m}\}\) there exists \(i(c_{m})\in \{4,\ldots ,I\}\) such that \(r[c_{m},\overline{p}^{i(c_{m})}]=A_{m}\),

(3) \(\forall \overrightarrow{d}\in \mathcal {A}^{\prime }\), there exists \(i( \overrightarrow{d})\in \{4,\ldots ,I\}\) such that \(R[\overrightarrow{d}, \overline{p}^{i(\overrightarrow{d})}]=(R_{<m^{*}},r_{m^{*}}+1,2,\ldots ,2)\).

As \(I^{*}\ge\) \(\prod _{m\le m^{*}}A_{m}\), condition (3) can be satisfied. We have \(\prod _{m\in \mathcal {M}}F_{I}(\overline{\mathbf {p}})\) \(\subseteq \mathcal {A}^{\prime }\cup \{\overrightarrow{c}\}\) and \(\overrightarrow{c}\in \prod _{m\in \mathcal {M}}F_{I}(\overline{\mathbf {p}})\). Table 2 gives the rank vectors of \(\overrightarrow{a}\) and \(\overrightarrow{c}\) for each coordinate preference \(\overline{p}^{i}\):

Table 2 The rank vectors of \(\overrightarrow{a}\) and \(\overrightarrow{c}\) in Case 1b

By the responsiveness of \(\delta\), \(R(\overrightarrow{c},\overline{p}^{i})\) \(\delta\) \(R(\overrightarrow{c},\overline{p}^{2})\) for all \(i\ne 2\). Thus, \(V_{I}[\overrightarrow{c},{\delta }(\overline{\mathbf {p}}\mathbf {)}]=r[ \overrightarrow{c},\delta (\overline{p}^{2})]\). By assumption, \(R( \overrightarrow{a},\overline{p}^{1})\) \(\delta\) \(R(\overrightarrow{a}, \overline{p}^{2})\), and by the responsiveness of \(\delta\), \(R( \overrightarrow{a},\overline{p}^{i})\) \(\delta\) \(R(\overrightarrow{a}, \overline{p}^{2})\) for all \(i\ge 3\). Thus, \(V_{I}[\overrightarrow{a}, {\delta }(\overline{\mathbf {p}}\mathbf {)}]=r[\overrightarrow{a},\delta (\overline{p}^{2})]\). Moreover, again by the responsiveness of \(\delta\), \(R(\overrightarrow{a},\overline{p}^{2})\) \(\delta\) \(R( \overrightarrow{c},\overline{p}^{2})\), which implies \(V_{I}[\overrightarrow{a },{\delta }(\overline{\mathbf {p}}\mathbf {)}]<V_{I}[\overrightarrow{c}, {\delta }(\overline{\mathbf {p}}\mathbf {)}]\). It follows that \(\overrightarrow{c}\notin F_{I}[{\delta }(\overline{\mathbf {p}}\mathbf { )]}\).

Finally, pick any \(\overrightarrow{d}\in \mathcal {A}^{\prime }\). By definition of \(\overline{\mathbf {p}}\), \(V_{I}[\overrightarrow{d},{ \delta }(\overline{\mathbf {p}}\mathbf {)}]\ge r[\overrightarrow{d},\delta ( \overline{p}^{i(\overrightarrow{d})})]=r[\overrightarrow{c},\delta ( \overline{p}^{2})]=V_{I}[\overrightarrow{c},{\delta }(\overline{ \mathbf {p}}\mathbf {)}]\). As \(V_{I}[\overrightarrow{a},{\delta }( \overline{\mathbf {p}}\mathbf {)}]<V_{I}[\overrightarrow{c},{\delta }( \overline{\mathbf {p}}\mathbf {)}]\), we get \([\prod _{m\in \mathcal {M}}F_{I}( \mathbf {p})]\) \({\cap }\) \(F_{I}[{\delta }(\overline{\mathbf {p}} \mathbf {)]=\emptyset }\), in contradiction the assumption that \(F_{I}\) is weakly stable over \(\mathcal {D}\).

This shows that case 1 is impossible.


Case 2: \(r_{m^{*}}=A_{m^{*}}\).

First, observe that one must have \(r_{m^{*}}^{\prime }=A_{m^{*}}-1\). To see why, suppose that \(r_{m^{*}}^{\prime }<A_{m^{*}}-1\). Define \(R^{\prime \prime }=(R_{<m^{*}},A_{m^{*}}-1,1,\ldots ,1)\). By the responsiveness of \(\delta\), \(R^{\prime \prime }\) \(\delta\) R, and by the transitivity of \(\delta\), \(R^{\prime \prime }\) \(\delta\) \(R^{\prime }\). Since \(r_{m^{*}}^{\prime \prime }=A_{m^{*}}-1<A_{m^{*}}\), this contradicts with case 1 being impossible. We complete the proof by using an argument similar to the one for case 1. Consider the coordinate 3-voter profile \(\mathbf {p}\) with the form below:

\(\forall m<m^{*}\), \(\mathbf {p}_{m}=\left( \begin{array}{c|ccc} Rank &{} p_{m}^{1} &{} p_{m}^{2} &{} p_{m}^{3} \\ 1 &{} \cdot &{} \cdot &{} a_{m} \\ r_{m} &{} a_{m} &{} a_{m} &{} \cdot \end{array} \right)\),

\(\mathbf {p}_{m^{*}}=\left( \begin{array}{c|ccc} Rank &{} p_{m^{*}}^{1} &{} p_{m^{*}}^{2} &{} p_{m^{*}}^{3} \\ \hline 1 &{} \cdot &{} a_{m^{*}} &{} a_{m^{*}} \\ A_{m^{*}}-1 &{} b_{m^{*}} &{} b_{m^{*}} &{} b_{m^{*}} \\ A_{m^{*}} &{} a_{m^{*}} &{} \cdot &{} \cdot \end{array} \right)\),

\(\forall m>m^{*}\), \(\mathbf {p}_{m}=\left( \begin{array}{c|ccc} Rank &{} 1 &{} 2 &{} 3 \\ \hline 1 &{} a_{m} &{} \cdot &{} a_{m} \\ A_{m} &{} \cdot &{} a_{m} &{} \cdot \end{array} \right)\).

Let \(\overrightarrow{a}=(a_{1},\ldots ,a_{M}),\overrightarrow{b} =(b_{1},\ldots ,b_{M}),\overrightarrow{c}=(b_{m^{*}},\overrightarrow{a} _{-m^{*}})\in \mathcal {A}\), \(\mathcal {A}^{\prime }=\{(b_{m^{*}}, \overrightarrow{\alpha }_{-m^{*}}):\overrightarrow{\alpha }\in \mathcal {A }\}{\setminus }\{\overrightarrow{c}\}\). Now, extend \(\mathbf {p}\) to a coordinate profile \(\overline{\mathbf {p}}\) involving \(I\ge \prod _{m\le m^{*}}A_{m}\) \(+3\) and such that

(1) \(\forall i\in \{1,2\}\), \(\overline{p}^{i}=p^{i}\),

(2) \(\forall i\in \{3,...,I\}\), \(\overline{p}^{i}\) agrees with \(p^{3}\) on the ranks given to \(a_{m}\) for all \(m\in \mathcal {M}\), and \(\overline{p}^{i}\) agrees with \(p^{3}\) on the rank given to \(b_{m^{*}}\),and \(\forall c_{m^{*}}\in \mathcal {A}_{m^{*}}{\setminus }\{a_{m^{*}},b_{m^{*}}\}\) there exists \(i(c_{m^{*}})\in \{4,\ldots ,I\}\) such that \(r[c_{m^{*}},\overline{p}^{i(c_{m^{*}})}]=A_{m^{*}}\),

(3) \(\forall \overrightarrow{d}\in \mathcal {A}^{\prime }\), there exists \(i( \overrightarrow{d})\in \{3,\ldots ,I\}\) with \(r[(\overrightarrow{d}, \overline{p}^{i(\overrightarrow{d})}]=R^{\prime }=(R_{<m^{*}},A_{m^{*}}-1,A_{m^{*}+1},\ldots ,A_{M})\).

As \(I^{*}\ge \prod _{m\le m^{*}}A_{m}\), condition (3) can be satisfied. Check that \(\prod _{m\in \mathcal {M}}F_{I}(\overline{\mathbf {p}} _{m})\subseteq \mathcal {A}^{\prime }\cup \{\overrightarrow{c}\}\), and \(\overrightarrow{c}\in \mathbf {\prod }_{m\in \mathcal {M}}F_{I}(\overline{ \mathbf {p}}_{m})\). Table 3 gives the rank vectors of \(\overrightarrow{a}\) and \(\overrightarrow{c}\) for each \(\overline{p}^{i}\):

Table 3 The rank vectors of \(\overrightarrow{a}\) and \(\overrightarrow{c}\) in Case 2

The responsiveness of \(\delta\) implies \(V_{I}[\overrightarrow{c},{ \delta }(\overline{\mathbf {p}}\mathbf {)}]=r[\overrightarrow{c},\delta ( \overline{p}^{2})]\). Moreover, again by the responsiveness of \(\delta\), we have \(V_{I}[\overrightarrow{a},{\delta }(\overline{\mathbf {p}}\mathbf { )}]\in \{r[\overrightarrow{a},\delta (\overline{p}^{1})],r[\overrightarrow{a},\delta (\overline{p}^{2})]\}\). Since R \(\delta\) \(R^{\prime }\), then \(r[ \overrightarrow{a},\delta (\overline{p}^{1})]<V_{I}[\overrightarrow{c}, {\delta }(\overline{\mathbf {p}}\mathbf {)}]\). Finally, the responsiveness of \(\delta\) implies \(r[\overrightarrow{a},\delta (\overline{p }^{2})]<V_{I}[\overrightarrow{c},{\delta }(\overline{\mathbf {p}} \mathbf {)}]\). Hence, \(V_{I}[\overrightarrow{a},{\delta }(\overline{ \mathbf {p}}\mathbf {)}]<V_{I}[\overrightarrow{c},{\delta }(\overline{ \mathbf {p}}\mathbf {)}]\). Thus, \(\overrightarrow{c}\notin F_{I}[{ \delta }(\overline{\mathbf {p}}\mathbf {)]}\).

Finally, pick any \(\overrightarrow{d}\in \mathcal {A}^{\prime }\). By definition of \(\overline{\mathbf {p}}\), \(V_{I}[\overrightarrow{d},{ \delta }(\overline{\mathbf {p}}\mathbf {)}]\ge r[\overrightarrow{d},\overline{ p}^{i(\overrightarrow{d})}]=r[\overrightarrow{c},\delta (\overline{p} ^{2})]=V_{I}[\overrightarrow{c},{\delta }(\overline{\mathbf {p}} \mathbf {)}]\). As \(V_{I}[\overrightarrow{a},{\delta }(\overline{ \mathbf {p}}\mathbf {)}]<V_{I}[\overrightarrow{c},{\delta }(\overline{ \mathbf {p}}\mathbf {)}]\), we get \([\prod _{m\in \mathcal {M}}F_{I}(\mathbf {p} )]\) \({\cap }\) \(F_{I}[{\delta }(\overline{\mathbf {p}}\mathbf { )]=\emptyset }\), in contradiction the assumption that \(F_{I}\) is weakly stable over \(\mathcal {D}\). \(\square\)

The second step in the proof of the necessity part consists in showing that \(F_{I}\) is weak product stable only if all voters are assigned to the same lexicographic preference.

Lemma 7

Take \(\widetilde{q},\widetilde{r}\in \mathcal {L}_{\mathcal { M}}\) with \(\widetilde{q}\ne \widetilde{r}\). If \(I\ge 3\), and if \(\{\delta ^{\widetilde{q}},\delta ^{\widetilde{r}}\}\subseteq \mathcal {D}\), then \(F_{I}\) is not weakly product stable over \(\mathcal {D}\).

Proof

Take \(\widetilde{q},\widetilde{r}\in \mathcal {L}_{\mathcal {M}}\) with \(\widetilde{q}\ne \widetilde{r}\) and \(\{\delta ^{\widetilde{q}},\delta ^{ \widetilde{r}}\}\subseteq \mathcal {D}\). Up to a relabelling of coordinates \(m\in \mathcal {M}\), one can suppose w.l.o.g. that \(\widetilde{q}=[12\ldots M]\) and \(m^{*}\) \(\widetilde{r}\) \(\overline{m}\) for some \(\overline{m},m^{*}\in \mathcal {M}\) with \(\overline{m}<m^{*}\). Take a 3-voter coordinate profile \(\mathbf {p}\) such as below:

\(\forall m\in \mathcal {M}{\setminus }\{m^{*},\overline{m}\}\), \(\mathbf {p}_{m}=\left( \begin{array}{c|ccc} Rank &{} p_{m}^{1} &{} p_{m}^{2} &{} p_{m}^{3} \\ \hline 1 &{} b_{m} &{} b_{m} &{} b_{m} \\ \ldots &{} \ldots &{} \ldots &{} \ldots \end{array} \right)\),

\(\mathbf {p}_{m^{*}}=\left( \begin{array}{c|ccc} Rank &{} p_{m^{*}}^{1} &{} p_{m^{*}}^{2} &{} p_{m^{*}}^{3} \\ \hline 1 &{} b_{m^{*}} &{} a_{m^{*}} &{} b_{m^{*}} \\ 2 &{} a_{m^{*}} &{} b_{m^{*}} &{} c_{m^{*}} \\ \ldots &{} \ldots &{} \ldots &{} \ldots \end{array} \right)\), \(\mathbf {p}_{\overline{m}}=\left( \begin{array}{c|ccc} Rank &{} p_{\overline{m}}^{1} &{} p_{\overline{m}}^{2} &{} p_{\overline{m} }^{3} \\ \hline 1 &{} a_{\overline{m}} &{} b_{\overline{m}} &{} a_{\overline{m}} \\ 2 &{} b_{\overline{m}} &{} c_{\overline{m}} &{} b_{\overline{m}} \\ \ldots &{} \ldots &{} \ldots &{} \ldots \end{array} \right)\).

Consider \(\overrightarrow{b}=(b_{1},\ldots ,b_{M})\in \mathcal {A}\). Clearly, \(\prod _{m\in \mathcal {M}}F_{I}(\mathbf {p})=\{\overrightarrow{b}\}\). Now, define \(\overrightarrow{c}=(c_{1},\ldots ,c_{M})\in \mathcal {A}\) by \(\forall m\in \mathcal {M}\), \(c_{m}=\left\{ \begin{array}{l} a_{m} \ \ \hbox {if }m\in \{m^{*},\overline{m}\} \\ b_{m} \ \ otherwise \end{array} \right.\). Take \({\delta }=(\delta ^{1},\delta ^{2},\delta ^{3})=(\delta ^{\widetilde{q}},\delta ^{\widetilde{r}},\delta ^{\widetilde{q} })\). Since \(a_{\overline{m}}\) \(p_{\overline{m}}^{i}\) \(b_{\overline{m}}\) for \(i=1,3\), the definition of \(\delta ^{\widetilde{q}}\) ensures that \(\overrightarrow{c}\) \(\delta (p^{i})\) \(\overrightarrow{b}\) for \(i=1,3\). Similarly, since \(a_{m^{*}}\) \(p_{m^{*}}^{2}\) \(b_{m^{*}}\), the definition of \(\delta ^{\widetilde{r}}\) ensures that \(\overrightarrow{c}\) \(\delta (p^{2})\) \(\overrightarrow{b}\). Thus, \(V_{I}[\overrightarrow{c}, {\delta }(\mathbf {p)}]<V_{I}[\overrightarrow{b},{\delta }( \mathbf {p)}]\), which in turn implies \([\prod _{m\in \mathcal {M}}F_{I}( \mathbf {p})]\) \({\cap }\) \(F_{I}[{\delta }(\overline{\mathbf {p}} \mathbf {)]=\emptyset }\). This shows that \(F_{I}\) is not weakly product stable over \(\mathcal {D}\). \(\square\)

The necessity part of Theorem 1 follows from combining Lemmas 6 and 7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dindar, H., Lainé, J. Compromise in combinatorial vote. Soc Choice Welf 59, 175–206 (2022). https://doi.org/10.1007/s00355-022-01387-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00355-022-01387-6

Navigation