Skip to main content
Log in

The Burning Coalition Bargaining Model

  • Original Paper
  • Published:
Social Choice and Welfare Aims and scope Submit manuscript

Abstract

The paper presents a coalitional bargaining model, the Burning Coalition Bargaining Model, having a peculiar type of partial breakdown. In fact, in this model, the rejection of a proposal causes the possibility of the proposed coalition to vanish, rather than triggering the end of all negotiations or the exclusion of some players from the game, as already proposed in the literature. Under this type of partial breakdown and adopting a standard rejecter-proposes protocol, 0-normalized, 3-players games are examined for extreme values of the breakdown probability. When such probability is equal to one, efficiency is more difficult to obtain than in models adopting discounting and the first mover advantage is strongly diminished. Furthermore, when an efficient outcome is attained, the final distribution of payoffs reflects the strength of players in the game, with strength being represented by belonging to more valuable coalitions. The same feature is retained when considering a probability of breakdown approaching zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Along the paper it will be adopted the following terminological convention: multi-player bargaining indicates a bargaining situation entailing more than two players where only one coalition, namely, the coalition with all players can be formed; coalitional bargaining, instead, assumes both the presence of more than two players and the possibility to form coalitions that are subsets of the set of all players; two players bargaining is self-explanatory.

  2. Note that the Egalitarian Solution is also known as the Equal Split (Hart and Mas-Colell 1996) or the Equal Division (van den Brink 2007) allocation.

  3. Note that such assumption is present both in Hart and Mas-Colell (1996) and Calvo and Gutiérrez-López (2016).

  4. We adopt the convention for which \(n = |N|\).

  5. As in Chatterjee et al. (1993), Okada (1996), Compte and Jehiel (2010) and in most of coalitional bargaining models, the order of responders is inconsequential, therefore it could be left to the proposer to choose it. However, given its irrelevance, a predefined order seems the easiest solution.

  6. In our 3-players case with zero normalized characteristic function, the possibility of continuing to bargain is, however, inconsequential.

  7. Note that, in the rest of the paper, since we will always assume 0–normalized games, the subscript 0 will be omitted.

  8. Note that, in Theorem 2 of Hart and Mas-Colell (1996), \(\rho \), the corresponding of \(\alpha \), tend to 1 instead of zero, since \(\rho \) indicates the probability of the game continuing without any breakdown taking place, whereas \(\alpha \) indicates the opposite.

References

  • Avery C, Zemsky PB (1994) Money burning and multiple equilibria in bargaining. Games Econ Behav 7(2):154–168. https://doi.org/10.1006/game.1994.1042

    Article  Google Scholar 

  • Banzhaf JF III (1964) Weighted voting doesn’t work: a mathematical analysis. Rutgers L Rev 19:317

    Google Scholar 

  • Binmore KG (1986) Bargaining and coalitions. Cambridge University Press, Cambridge

    Google Scholar 

  • Binmore K, Rubinstein A, Wolinsky A (1986) The Nash bargaining solution in economic modelling. Rand J Econ 17(2):176–188

    Article  Google Scholar 

  • Britz V (2018) Rent-seeking and surplus destruction in unanimity bargaining. Games Econom Behav 109:1–20. https://doi.org/10.1016/j.geb.2017.12.005

    Article  Google Scholar 

  • Britz V, Herings PJ-J, Predtetchinski A (2010) Non-cooperative support for the asymmetric Nash bargaining solution. J Econo Theory 145(5):1951–1967

    Article  Google Scholar 

  • Busch L-A, Shi S, Wen Q (1998) Bargaining with surplus destruction. Can J Econ. https://doi.org/10.2307/136500

    Article  Google Scholar 

  • Calvo E (2008) Random marginal and random removal values. Int J Game Theory 37(4):533–563

    Article  Google Scholar 

  • Calvo E, Gutiérrez-López E (2016) A strategic approach for the discounted Shapley values. Theor Decis 80(2):271–293

    Article  Google Scholar 

  • Chae S, Yang J-A (1994) An N-person pure bargaining game. J Econ Theory 62(1):86–102

    Article  Google Scholar 

  • Chatterjee K, Dutta B, Ray D, Sengupta K (1993) A noncooperative theory of coalitional bargaining. Rev Econ Stud 60(2):463–477

    Article  Google Scholar 

  • Compte O, Jehiel P (2010) The coalitional Nash bargaining solution. Econometrica 78(5):1593–1623

    Article  Google Scholar 

  • Evans R (1997) Coalitional bargaining with competition to make offers. Games Econom Behav 19(2):211–220

    Article  Google Scholar 

  • Hart S, Mas-Colell A (1996) Bargaining and value. Econom J Economc Soc 64(2):357–380

    Google Scholar 

  • Kalai E (1977) Nonsymmetric Nash solutions and replications of 2-person bargaining. Int J Game Theory 6(3):129–133

    Article  Google Scholar 

  • Kawamori T (2016) Hart-Mas-Colell implementation of the discounted Shapley value. Theor Decis 81(3):357–369

    Article  Google Scholar 

  • Kim T, Jeon Y (2009) Stationary perfect equilibria of an n-person noncooperative bargaining game and cooperative solution concepts. Eur J Oper Res 194(3):922–932

    Article  Google Scholar 

  • Krishna V, Serrano R (1995) Perfect equilibria of a model of n-person noncooperative bargaining. Int J Game Theory 24(3):259–272

    Article  Google Scholar 

  • Krishna V, Serrano R (1996) Multilateral bargaining. Rev Econ Stud 63(1):61–80

    Article  Google Scholar 

  • Lensberg T (1988) Stability and the Nash solution. J Econ Theory 45(2):330–341

    Article  Google Scholar 

  • Li D (2011) The power to delay. Econ Lett 112(2):155–157. https://doi.org/10.1016/j.econlet.2011.04.008

    Article  Google Scholar 

  • Miyakawa T (2008) Noncooperative foundation of n-person asymmetric Nash bargaining solution. J Econ Kwansei Gakuin Univ 62:1–18

    Google Scholar 

  • Moldovanu B, Winter E (1995) Order independent equilibria. Games Econ Behav 9(1):21–34

    Article  Google Scholar 

  • Nash JF Jr (1950) The bargaining problem. Econom J Econom Soc 18(2):155–162

    Google Scholar 

  • Nash J (1953) Two-person cooperative games. Econom J Econom Soc 21(1):128–140

    Google Scholar 

  • Nurmi H (1980) Game theory and power indices. Zeitschrift für Nationalökonomie 40(1):35–58. https://doi.org/10.1007/BF01282508

    Article  Google Scholar 

  • Okada A (1996) A noncooperative coalitional bargaining game with random proposers. Games Econ Behav 16(1):97–108

    Article  Google Scholar 

  • Okada A (2011) Coalitional bargaining games with random proposers: theory and application. Games Econ Behav 73(1):227–235

    Article  Google Scholar 

  • Osborne MJ, Rubinstein A (1990) Bargaining and markets. Academic Press, Cambridge

    Google Scholar 

  • Pérez-Castrillo D, Wettstein D (2001) Bidding for the surplus: a non-cooperative approach to the Shapley value. J Econ Theory 100(2):274–294

    Article  Google Scholar 

  • Rogna M (2019) Coalition formation and bargaining protocols: a review of the literature. J Econo Surv 33(1):226–251

    Article  Google Scholar 

  • Rubinstein A (1982) Perfect equilibrium in a bargaining model. Econom J Econom Soc 50(1):97–109

    Google Scholar 

  • Serrano R (2004) Fifty years of the Nash program, 1953-2003. Technical report, Brown University Economics Working Paper

  • Sutton J (1986) Non-cooperative bargaining theory: an introduction. Rev Econ Stud 53(5):709–724

    Article  Google Scholar 

  • Thomson W (1983) Problems of fair division and the egalitarian solution. J Econ Theory 31(2):211–226

    Article  Google Scholar 

  • van den Brink R (2007) Null or nullifying players: the difference between the Shapley value and equal division solutions. J Econ Theory 136(1):767–775

    Article  Google Scholar 

  • van den Brink R, Funaki Y (2015) Implementation and axiomatization of discounted Shapley values. Soc Choice Welf 45(2):329–344

    Article  Google Scholar 

  • van den Brink R, Funaki Y, Ju Y (2013) Reconciling marginalism with egalitarianism: consistency, monotonicity, and implementation of egalitarian Shapley values. Soc Choice Welf 40(3):693–714

    Article  Google Scholar 

  • Yan H (2003) Noncooperative selection of the core. Int J Game Theory 31(4):527–540

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Rogna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 164 KB)

Appendices

Appendix

1.1 1. Graphical representation of a BCBM with \(\alpha = 1\)

Fig. 1
figure 1

Extensive form representation of a 3-players BCBM with \(\alpha \in (0,1]\) and player set \(\left\{ 1,2,3\right\} \)

1.2 2. Final payoffs obtainable by players by calling the grand coalition depending on the identity of first proposer

1.3 j first proposer

$$\begin{aligned} v(i,k)&\le (2-\alpha )\frac{v(j,k)}{3-2\alpha } \wedge \pi _k^2> 0 \pi _j&= \frac{v(N)}{3-2\alpha }+\frac{2(1-\alpha )v(i,j)}{(3-2\alpha )(2-\alpha )}+\frac{2\alpha (1-\alpha )v(j,k)}{(3-2\alpha )(2-\alpha )^2}-\frac{2(2-2\alpha +\alpha ^2)v(i,k)}{(3-2\alpha )(2-\alpha )^3},\\ \pi _i&= \frac{(1-\alpha )v(N)}{3-2\alpha }+\frac{v(i,j)}{3-2\alpha }-\frac{(6-8\alpha +3\alpha ^2)v(j,k)}{(3-2\alpha )(2-\alpha )^2}+\frac{(2-2\alpha +\alpha ^2)v(i,k)}{(3-2\alpha )(2-\alpha )^3}, \\ \pi _k&= \frac{(1-\alpha )v(N)}{3-2\alpha } - \frac{(4-3\alpha )v(i,j)}{(3-2\alpha )(2-\alpha )}+\frac{(6-6\alpha +\alpha ^2)v(j,k)}{(3-2\alpha )(2-\alpha )^2}+\frac{(2-2\alpha +\alpha ^2)v(i,k)}{(3-2\alpha )(2-\alpha )^3}.\\ v(i,k)&\le (2-\alpha )\frac{v(j,k)}{3-2\alpha } \wedge \pi _k^2 \le 0\\ \pi _j&= \frac{v(N)}{3-2\alpha }+\frac{(2-6\alpha +3\alpha ^2)v(i,j)}{(3-2\alpha )(2-\alpha )^2}+\frac{1}{3-2\alpha }\left( \frac{v(j,k)}{(2-\alpha )^2}-\frac{v(i,k)}{(2-\alpha )^3}\right) ,\\ \pi _i&= \frac{(1-\alpha )v(N)}{3-2\alpha }+\frac{v(i,j)}{(3-2\alpha )(2-\alpha )}\\&\quad -\frac{(5-9\alpha +7\alpha ^2-2\alpha ^3)}{(3-2\alpha )}\left( \frac{v(j,k)}{(2-\alpha )^2}-\frac{v(i,k)}{(2-\alpha )^3}\right) , \\ \pi _k&= \frac{(1-\alpha )v(N)}{3-2\alpha } - \frac{(1-\alpha )(4-3\alpha )v(i,j)}{(3-2\alpha )(2-\alpha )^2}\\&\quad +(1-\alpha )\frac{(4-5\alpha +2\alpha ^2)}{3-2\alpha }\left( \frac{v(j,k)}{(2-\alpha )^2}-\frac{v(i,k)}{(2-\alpha )^3}\right) . v(i,k)&> (2-\alpha )\frac{v(j,k)}{3-2\alpha } \wedge \pi _k^2> 0\\ \pi _j&= \frac{v(N)}{3-2\alpha }+\frac{2(1-\alpha )v(j,k)}{(3-2\alpha )(2-\alpha )}-\frac{2(8-12\alpha +5\alpha ^2)v(i,k)}{(3-2\alpha )(2-\alpha )^3},\\ \pi _i&= \frac{(1-\alpha )v(N)}{3-2\alpha }+\frac{v(i,j)}{(3-2\alpha )}-\frac{(4-3\alpha )v(j,k)}{(3-2\alpha )(2-\alpha )}+\frac{(8-12\alpha +5\alpha ^2)v(i,k)}{(3-2\alpha )(2-\alpha )^3}, \\ \pi _k&= \frac{(1-\alpha )v(N)}{3-2\alpha } - \frac{v(i,j)}{(3-2\alpha )}+\frac{v(j,k)}{(3-2\alpha )}+\frac{(8-12\alpha +5\alpha ^2)v(i,k)}{(3-2\alpha )(2-\alpha )^3}.\\ v(i,k)&> (2-\alpha )\frac{v(j,k)}{3-2\alpha } \wedge \pi _k^2 \le 0\\ \pi _j&= \frac{v(N)}{3-2\alpha }+\frac{(2-6\alpha +3\alpha ^2)v(i,j)}{(3-2\alpha )(2-\alpha )^2}+\frac{v(j,k)}{(2-\alpha )}-\frac{2(12-25\alpha +16\alpha ^2-8\alpha ^3)v(i,k)}{(3-2\alpha )(2-\alpha )^4},\\ \pi _i&= \frac{(1-\alpha )v(N)}{3-2\alpha }+\frac{v(i,j)}{(3-2\alpha )(2-\alpha )}-\frac{v(j,k)}{(2-\alpha )}+\frac{(12-21\alpha +12\alpha ^2-2\alpha ^3)v(i,k)}{(3-2\alpha )(2-\alpha )^3}, \\ \pi _k&= \frac{(1-\alpha )v(N)}{3-2\alpha } - \frac{(1-\alpha )(4-3\alpha )v(i,j)}{(3-2\alpha )(2-\alpha )^2}+\frac{2\alpha (1-\alpha )(2-3\alpha +\alpha ^2)v(i,k)}{(3-2\alpha )(2-\alpha )^4}.\\ \end{aligned}$$

1.4 i first proposer

$$\begin{aligned} v(i,k)&\le (2-\alpha )\frac{v(j,k)}{3-2\alpha } \wedge \pi _k^2> 0\\ \pi _i&= \frac{v(N)}{3-2\alpha }+\frac{2(1-\alpha )v(i,j)}{(3-2\alpha )(2-\alpha )}-\frac{(12-16\alpha +5\alpha ^2)v(j,k)}{(3-2\alpha )(2-\alpha )^3}+\frac{(4-8\alpha +3\alpha ^2)v(i,k)}{(3-2\alpha )(2-\alpha )^4},\\ \pi _j&= \frac{(1-\alpha )(v(N)+v(i,j))}{3-2\alpha }+\frac{(1-\alpha )}{3-2\alpha }\left( \frac{\alpha v(j,k)}{(2-\alpha )^2}+\frac{(4-\alpha )v(i,k)}{(2-\alpha )^3}\right) , \\ \pi _k&= \frac{(1-\alpha )v(N)}{3-2\alpha } - \frac{(4-3\alpha )v(i,j)}{(3-2\alpha )(2-\alpha )}+\frac{(12-18\alpha +8\alpha ^2-\alpha ^3)v(j,k)}{(3-2\alpha )(2-\alpha )^3}\\&\quad +\frac{(4-6\alpha +4\alpha ^2-\alpha ^3)v(i,k)}{(3-2\alpha )(2-\alpha )^4}.\\ v(i,k)&\le (2-\alpha )\frac{v(j,k)}{3-2\alpha } \wedge \pi _k^2 \le 0\\ \pi _i&= \frac{v(N)}{3-2\alpha }+\frac{(1-2\alpha )v(i,j)}{(3-2\alpha )(2-\alpha )}-\frac{(1-\alpha )(7-3\alpha )}{3-2\alpha }\left( \frac{v(j,k)}{(2-\alpha )^3}-\frac{v(i,k)}{(2-\alpha )^4}\right) ,\\ \pi _j&= \frac{(1-\alpha )v(N)}{3-2\alpha }+\frac{v(i,j)}{(3-2\alpha )(2-\alpha )}-\frac{(1-\alpha )(4-\alpha )}{(3-2\alpha )}\left( \frac{v(j,k)}{(2-\alpha )^2}-\frac{v(i,k)}{(2-\alpha )^3}\right) , \\ \pi _k&= \frac{(1-\alpha )v(N)}{3-2\alpha } - \frac{2(1-\alpha )v(i,j)}{(3-2\alpha )(2-\alpha )}-\frac{(1-\alpha )(1-3\alpha +\alpha ^2)}{3-2\alpha }\left( \frac{v(j,k)}{(2-\alpha )^3}-\frac{v(i,k)}{(2-\alpha )^4}\right) .\\ v(i,k)&> (2-\alpha )\frac{v(j,k)}{3-2\alpha } \wedge \pi _k^2> 0\\ \pi _i&= \frac{v(N)}{3-2\alpha }+\frac{2(1-\alpha )v(i,j)}{(3-2\alpha )(2-\alpha )}-\frac{2v(j,k)}{3-2\alpha }\\&\quad +\frac{4(1-\alpha )(2-2\alpha +\alpha ^2)v(i,k)}{(3-2\alpha )(2-\alpha )^3},\\ \pi _j&= \frac{(1-\alpha )v(N)}{3-2\alpha }+\frac{v(i,j)+v(j,k)}{3-2\alpha }-\frac{(16-28\alpha +17\alpha ^2-4\alpha ^3)v(i,k)}{(3-2\alpha )(2-\alpha )^3}, \\ \pi _k&= \frac{(1-\alpha )v(N)}{3-2\alpha } -\frac{(4-3\alpha )v(i,j)}{(3-2\alpha )(2-\alpha )}+\frac{v(j,k)}{3-2\alpha }-\frac{(8-12\alpha +5\alpha ^2)v(i,k)}{(3-2\alpha )(2-\alpha )^3}.\\ v(i,k)&> (2-\alpha )\frac{v(j,k)}{3-2\alpha } \wedge \pi _k^2 \le 0\\ \pi _i&= \frac{v(N)}{3-2\alpha }+\frac{(1-2\alpha )v(i,j)}{(3-2\alpha )(2-\alpha )}-\frac{v(j,k)}{2-\alpha }+\frac{(10-15\alpha +8\alpha ^2-2\alpha ^3)v(i,k)}{(3-2\alpha )(2-\alpha )^3},\\ \pi _j&= \frac{(1-\alpha )v(N)}{3-2\alpha }+\frac{v(i,j)}{(3-2\alpha )(2-\alpha )}+\frac{v(j,k)}{2-\alpha }-\frac{(12-19\alpha +10\alpha ^2-2\alpha ^3)v(i,k)}{(3-2\alpha )(2-\alpha )^3}, \\ \pi _k&= \frac{(1-\alpha )v(N)}{3-2\alpha } - \frac{2(1-\alpha )v(i,j)}{(3-2\alpha )(2-\alpha )}+\frac{2(1-\alpha )^2v(i,k)}{(3-2\alpha )(2-\alpha )^3}. \end{aligned}$$

k first proposer

$$\begin{aligned} v(i,k)&\le (2-\alpha )\frac{v(j,k)}{3-2\alpha } \wedge \pi _k^2> 0\\ \pi _k&= \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\frac{(12-23\alpha +15\alpha ^2-3\alpha ^3)v(j,k)}{(3-2\alpha )(2-\alpha )^3}\\&\quad +\frac{\alpha (1-3\alpha +\alpha ^2)v(i,k)}{(3-2\alpha )(2-\alpha )^4},\\ \pi _j&= \frac{(1-\alpha )v(N)}{3-2\alpha }+\frac{v(i,j)}{3-2\alpha }+\frac{\alpha (1-\alpha )v(j,k)}{(3-2\alpha )(2-\alpha ^3)}-\frac{(1-\alpha )(4-\alpha )v(i,k)}{(3-2\alpha )(2-\alpha )^4}, \\ \pi _i&= \frac{(1-\alpha )v(N)}{3-2\alpha } - \frac{v(i,j)}{3-2\alpha }-\frac{(6-8\alpha +3\alpha ^2)v(j,k)}{(3-2\alpha )(2-\alpha )^2}+\frac{(2-2\alpha +\alpha ^2)v(i,k)}{(3-2\alpha )(2-\alpha )^3}.\\ v(i,k)&\le (2-\alpha )\frac{v(j,k)}{3-2\alpha } \wedge \pi _k^2 \le 0\\ \pi _k&= \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{(3-2\alpha )(2-\alpha )}+\alpha \left( \frac{v(j,k)}{(2-\alpha )^2}-\frac{v(i,k)}{(2-\alpha )^3}\right) ,\\ \pi _j&= \frac{(1-\alpha )v(N)}{3-2\alpha }+\frac{v(i,j)}{(3-2\alpha )(2-\alpha )}+\frac{(1-\alpha )(3-\alpha )}{(3-2\alpha )}\left( \frac{v(j,k)}{(2-\alpha )^2}-\frac{v(i,k)}{(2-\alpha )^3}\right) , \\ \pi _i&= \frac{(1-\alpha )v(N)}{3-2\alpha } - \frac{v(i,j)}{(3-2\alpha )(2-\alpha )}-\frac{(3-3\alpha +\alpha ^2)}{3-2\alpha }\left( \frac{v(j,k)}{(2-\alpha )^2}-\frac{v(i,k)}{(2-\alpha )^3}\right) .\\ v(i,k)&> (2-\alpha )\frac{v(j,k)}{3-2\alpha } \wedge \pi _k^2> 0\\ \pi _k&= \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\frac{2(1-\alpha )v(j,k)}{(3-2\alpha )(2-\alpha )}\\&\quad -\frac{4(1-\alpha )(2-2\alpha +\alpha ^2)v(i,k)}{(3-2\alpha )(2-\alpha )^3},\\ \pi _j&= \frac{(1-\alpha )v(N)}{3-2\alpha }+\frac{v(i,j)+v(j,k)}{3-2\alpha }-\frac{(16-28\alpha +17\alpha ^2-4\alpha ^3)v(i,k)}{(3-2\alpha )(2-\alpha )^3}, \\ \pi _i&= \frac{(1-\alpha )v(N)}{3-2\alpha } +\frac{v(i,j)}{3-2\alpha } - \frac{(4-3\alpha )v(j,k)}{(3-2\alpha )(2-\alpha )}+\frac{(8-12\alpha +5\alpha ^2)v(i,k)}{(3-2\alpha )(2-\alpha )^3}.\\ v(i,k)&> (2-\alpha )\frac{v(j,k)}{3-2\alpha } \wedge \pi _k^2 \le 0\\ \pi _k&= \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\frac{2\alpha (1-\alpha )v(i,k)}{(3-2\alpha )(2-\alpha )^3},\\ \pi _j&= \frac{(1-\alpha )v(N)}{3-2\alpha }+\frac{v(i,j)}{(3-2\alpha )(2-\alpha )}+\frac{v(j,k)}{2-\alpha }-\frac{(12-19\alpha +10\alpha ^2-2\alpha ^3)v(i,k)}{(3-2\alpha )(2-\alpha )^3}, \\ \pi _i&= \frac{(1-\alpha )v(N)}{3-2\alpha } +\frac{v(i,j)}{(3-2\alpha )(2-\alpha )}-\frac{v(j,k)}{2-\alpha } +\frac{(12-21\alpha +12\alpha ^2-2\alpha ^3)v(i,k)}{(3-2\alpha )(2-\alpha )^3}. \end{aligned}$$

1.1 3. Final payoffs obtainable by players by calling their most profitable 2-players coalition depending on the identity of first proposer

1.2 j first proposer (calling \(\left\{ j,k \right\} \))

$$\begin{aligned} v(i,k)&\le (2-\alpha )\frac{v(j,k)}{3-2\alpha } \wedge \pi _k^2> 0\\ \pi _j&= v(j,k) - \alpha \max \left( \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\frac{\alpha v(i,k)}{(3-2\alpha )(2-\alpha )^2},0\right) +\\&\quad -(1-\alpha )\max \left( \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\frac{(12-23\alpha +15\alpha ^2-3\alpha ^3)v(j,k)}{(3-2\alpha )(2-\alpha )^3}\right. \\&\quad \left. + \frac{(1-3\alpha +\alpha ^2)v(i,k)}{(3-2\alpha )(2-\alpha )^4},0\right) .\\ v(i,k)&\le (2-\alpha )\frac{v(j,k)}{3-2\alpha } \wedge \pi _k^2 \le 0\\ \pi _j&= v(j,k) - \alpha \max \left( \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\frac{\alpha v(i,k)}{(3-2\alpha )(2-\alpha )^2},0\right) +\\&\quad -(1-\alpha )\max \left( \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\alpha \Bigr (\frac{v(j,k)}{(2-\alpha )^2}-\frac{v(i,k)}{(2-\alpha )^3}\Bigl ),0\right) .\\ v(i,k)&> (2-\alpha )\frac{v(j,k)}{3-2\alpha } \wedge \pi _k^2> 0 \wedge v(i,k) \le (2-\alpha )\frac{v(i,j)}{3-2\alpha }\\ \pi _j&= v(j,k) - \alpha \max \left( \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\frac{\alpha v(i,k)}{(3-2\alpha )(2-\alpha )^2},0\right) +\\&\quad -(1-\alpha )\max \left( \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\frac{2(1-\alpha )v(j,k)}{(3-2\alpha )(2-\alpha )}\right. \\&\left. \quad -\frac{4(1-\alpha )(2-2\alpha +\alpha ^2)v(i,k)}{(3-2\alpha )(2-\alpha )^3},0\right) .\\ v(i,k)&> (2-\alpha )\frac{v(j,k)}{3-2\alpha } \wedge \pi _k^2 \le 0 \wedge v(i,k) \le (2-\alpha )\frac{v(i,j)}{3-2\alpha }\\ \pi _j&= v(j,k) - \alpha \max \left( \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\frac{\alpha v(i,k)}{(3-2\alpha )(2-\alpha )^2},0\right) +\\&\quad -(1-\alpha )\max \left( \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\frac{2\alpha (1-\alpha )v(i,k)}{(3-2\alpha )(2-\alpha )},0\right) .\\ \pi _k^2&> 0 \wedge v(i,k)> (2-\alpha )\frac{v(i,j)}{3-2\alpha }\\ \pi _j&= v(j,k) - \alpha \max \left( \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\frac{(6-9\alpha +4\alpha ^2)v(i,k)}{(3-2\alpha )(2-\alpha )^3},0\right) +\\&\quad -(1-\alpha )\max \left( \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\frac{2(1-\alpha )v(j,k)}{(3-2\alpha )(2-\alpha )}\right. \\&\left. \quad -\frac{4(1-\alpha )(2-2\alpha +\alpha ^2)v(i,k)}{(3-2\alpha )(2-\alpha )^3},0\right) .\\ \pi _k^2&\le 0 \wedge v(i,k) > (2-\alpha )\frac{v(i,j)}{3-2\alpha }\\ \pi _j&= v(j,k) - \alpha \max \left( \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\frac{(6-9\alpha +4\alpha ^2)v(i,k)}{(3-2\alpha )(2-\alpha )^3},0\right) +\\&\quad -(1-\alpha )\max \left( \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\frac{2\alpha (1-\alpha )v(i,k)}{(3-2\alpha )(2-\alpha )},0\right) .\\ \end{aligned}$$

1.3 i first proposer (calling \(\left\{ i,k \right\} \))

$$\begin{aligned} v(i,k)&\le (2-\alpha )\frac{v(j,k)}{3-2\alpha } \wedge \pi _k^2> 0 \wedge v(j,k) \le (2-\alpha )\frac{v(i,j)}{3-2\alpha }\\ \pi _i&= v(i,k) - \alpha \max \left( \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\frac{\alpha v(j,k)}{(3-2\alpha )(2-\alpha )^2},0\right) +\\&\quad -(1-\alpha )\max \left( \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\frac{(12-23\alpha +15\alpha ^2-3\alpha ^3)v(j,k)}{(3-2\alpha )(2-\alpha )^3}\right. \\&\left. \quad + \frac{(1-3\alpha +\alpha ^2)v(i,k)}{(3-2\alpha )(2-\alpha )^4},0\right) .\\ v(i,k)&\le (2-\alpha )\frac{v(j,k)}{3-2\alpha } \wedge \pi _k^2 \le 0 \wedge v(j,k) \le (2-\alpha )\frac{v(i,j)}{3-2\alpha }\\ \pi _i&= v(i,k) - \alpha \max \left( \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\frac{\alpha v(j,k)}{(3-2\alpha )(2-\alpha )^2},0\right) +\\&\quad -(1-\alpha )\max \left( \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\alpha \Bigr (\frac{v(j,k)}{(2-\alpha )^2}-\frac{v(i,k)}{(2-\alpha )^3}\Bigl ),0\right) .\\ v(i,k)&\le (2-\alpha )\frac{v(j,k)}{3-2\alpha } \wedge \pi _k^2> 0 \wedge v(j,k)> (2-\alpha )\frac{v(i,j)}{3-2\alpha }\\ \pi _i&= v(i,k) - \alpha \max \left( \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\frac{(6-8\alpha +4\alpha ^2) v(j,k)}{(3-2\alpha )(2-\alpha )^2},0\right) +\\&\quad -(1-\alpha )\max \left( \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\frac{(12-23\alpha +15\alpha ^2-3\alpha ^3)v(j,k)}{(3-2\alpha )(2-\alpha )^3}\right. \\&\left. \quad -\frac{\alpha (1-3\alpha +\alpha ^2)v(i,k)}{(3-2\alpha )(2-\alpha )^4},0\right) .\\ v(i,k)&\le (2-\alpha )\frac{v(j,k)}{3-2\alpha } \wedge \pi _k^2 \le 0 \wedge v(j,k)> (2-\alpha )\frac{v(i,j)}{3-2\alpha }\\ \pi _i&= v(i,k) - \alpha \max \left( \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\frac{(6-8\alpha +4\alpha ^2) v(j,k)}{(3-2\alpha )(2-\alpha )^2},0\right) +\\&\quad -(1-\alpha )\max \left( \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\alpha \Bigr (\frac{v(j,k)}{(2-\alpha )^2}-\frac{v(i,k)}{(2-\alpha )^3}\Bigl ),0\right) .\\ v(i,k)&> (2-\alpha )\frac{v(j,k)}{3-2\alpha } \wedge \pi _k^2> 0 \wedge v(j,k) \le (2-\alpha )\frac{v(i,j)}{3-2\alpha }\\ \pi _i&= v(i,k) - \alpha \max \left( \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\frac{\alpha v(j,k)}{(3-2\alpha )(2-\alpha )^2},0\right) +\\&\quad -(1-\alpha )\max \left( \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\frac{2(1-\alpha )v(j,k)}{(3-2\alpha )(2-\alpha )^2}\right. \\&\quad \left. -\frac{4(1-\alpha )(2-2\alpha +\alpha ^2)v(i,k)}{(3-2\alpha )(2-\alpha )^3},0\right) .\\ v(i,k)&> (2-\alpha )\frac{v(j,k)}{3-2\alpha } \wedge \pi _k^2 \le 0 \wedge v(j,k) \le (2-\alpha )\frac{v(i,j)}{3-2\alpha }\\ \pi _i&= v(i,k) - \alpha \max \left( \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\frac{\alpha v(j,k)}{(3-2\alpha )(2-\alpha )^2},0\right) +\\&\quad -(1-\alpha )\max \left( \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\frac{2\alpha (1-\alpha )v(i,k)}{(3-2\alpha )(2-\alpha )^3},0\right) .\\ v(i,k)&> (2-\alpha )\frac{v(j,k)}{3-2\alpha } \wedge \pi _k^2> 0 \wedge v(j,k)> (2-\alpha )\frac{v(i,j)}{3-2\alpha }\\ \pi _i&= v(i,k) - \alpha \max \left( \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\frac{(6-8\alpha +4\alpha ^2) v(j,k)}{(3-2\alpha )(2-\alpha )^2},0\right) +\\&\quad -(1-\alpha )\max \left( \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\frac{2(1-\alpha )v(j,k)}{(3-2\alpha )(2-\alpha )^2}\right. \\&\left. \quad -\frac{4(1-\alpha )(2-2\alpha +\alpha ^2)v(i,k)}{(3-2\alpha )(2-\alpha )^3},0\right) .\\ v(i,k)&> (2-\alpha )\frac{v(j,k)}{3-2\alpha } \wedge \pi _k^2 \le 0 \wedge v(j,k) > (2-\alpha )\frac{v(i,j)}{3-2\alpha }\\ \pi _i&= v(i,k) - \alpha \max \left( \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\frac{(6-8\alpha +4\alpha ^2) v(j,k)}{(3-2\alpha )(2-\alpha )^2},0\right) +\\&\quad -(1-\alpha )\max \left( \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{3-2\alpha }+\frac{2\alpha (1-\alpha )v(i,k)}{(3-2\alpha )(2-\alpha )^3},0\right) . \end{aligned}$$

1.4 k first proposer (calling \(\left\{ j,k \right\} \))

$$\begin{aligned} v(i,k)&\le (2-\alpha )\frac{v(j,k)}{3-2\alpha } \wedge \pi _k^2> 0\\ \pi _k&= v(j,k) - \alpha \max \left( \frac{v(N)}{3-2\alpha }+\frac{(1-2\alpha )v(i,j)}{(3-2\alpha )(2-\alpha )}\right. \\&\left. \quad -\frac{3(1-\alpha )v(i,k)}{(3-2\alpha )(2-\alpha )^2},0\right) +\\&\quad -(1-\alpha )\max \left( \frac{v(N)}{3-2\alpha }+\frac{2(1-\alpha )v(i,j)}{(3-2\alpha )(2-\alpha )}+\frac{2\alpha (1-\alpha )v(j,k)}{(3-2\alpha )(2-\alpha )^2} - \frac{2(2-2\alpha +\alpha ^2)v(i,k)}{(3-2\alpha )(2-\alpha )^2},0\right) .\\ v(i,k)&\le (2-\alpha )\frac{v(j,k)}{3-2\alpha } \wedge \pi _k^2 \le 0\\ \pi _k&= v(j,k) - \alpha \max \left( \frac{v(N)}{3-2\alpha }+\frac{(1-2\alpha )v(i,j)}{(3-2\alpha )(2-\alpha )}-\frac{3(1-\alpha )v(i,k)}{(3-2\alpha )(2-\alpha )^2},0\right) +\\&\quad -(1-\alpha )\max \left( \frac{v(N)}{3-2\alpha }+\frac{(2-6\alpha +3\alpha ^2)v(i,j)}{(3-2\alpha )(2-\alpha )^2}\right. \\&\left. \quad +\frac{1}{3-2\alpha }\Bigr (\frac{v(j,k)}{(2-\alpha )^2}-\frac{v(i,k)}{(2-\alpha )^3} \Bigl ),0\right) .\\ v(i,k)&> (2-\alpha )\frac{v(j,k)}{3-2\alpha } \wedge \pi _k^2> 0 \wedge v(i,k) \le (2-\alpha )\frac{v(i,j)}{3-2\alpha }\\ \pi _k&= v(j,k) - \alpha \max \left( \frac{v(N)}{3-2\alpha }+\frac{(1-2\alpha )v(i,j)}{(3-2\alpha )(2-\alpha )}-\frac{3(1-\alpha )v(i,k)}{(3-2\alpha )(2-\alpha )^2},0\right) +\\&\quad -(1-\alpha )\max \left( \frac{v(N)}{3-2\alpha }+\frac{2(1-\alpha )v(j,k)}{(3-2\alpha )(2-\alpha )}-\frac{2(8-12\alpha +5\alpha ^2)v(i,k)}{(3-2\alpha )(2-\alpha )^3},0\right) .\\ v(i,k)&> (2-\alpha )\frac{v(j,k)}{3-2\alpha } \wedge \pi _k^2 \le 0 \wedge v(i,k) \le (2-\alpha )\frac{v(i,j)}{3-2\alpha }\\ \pi _k&= \quad v(j,k) - \alpha \max \left( \frac{v(N)}{3-2\alpha }+\frac{(1-2\alpha )v(i,j)}{(3-2\alpha )(2-\alpha )}-\frac{3(1-\alpha )v(i,k)}{(3-2\alpha )(2-\alpha )^2},0\right) +\\&\quad -(1-\alpha )\max \left( \frac{v(N)}{3-2\alpha }+\frac{(2-6\alpha +3\alpha ^2)v(i,j)}{(3-2\alpha )(2-\alpha )^2}+\frac{v(j,k)}{2-\alpha }\right. \\&\left. \quad -\frac{2(12-25\alpha +16\alpha ^2-8\alpha ^3)v(i,k)}{(3-2\alpha )(2-\alpha )^4},0\right) .\\ \pi _k^2&> 0 \wedge v(i,k)> (2-\alpha )\frac{v(i,j)}{3-2\alpha }\\ \pi _k&= v(j,k) - \alpha \max \left( \frac{v(N)}{3-2\alpha }+\frac{(1-2\alpha )v(i,j)}{(3-2\alpha )(2-\alpha )}-\frac{(6-5\alpha )v(i,k)}{(3-2\alpha )(2-\alpha )^2},0\right) +\\&\quad -(1-\alpha )\max \left( \frac{v(N)}{3-2\alpha }+\frac{2(1-\alpha )v(j,k)}{(3-2\alpha )(2-\alpha )}-\frac{2(8-12\alpha +5\alpha ^2)v(i,k)}{(3-2\alpha )(2-\alpha )^3},0\right) .\\ \pi _k^2&\le 0 \wedge v(i,k) > (2-\alpha )\frac{v(i,j)}{3-2\alpha }\\ \pi _k&= v(j,k) - \alpha \max \left( \frac{v(N)}{3-2\alpha }+\frac{(1-2\alpha )v(i,j)}{(3-2\alpha )(2-\alpha )}-\frac{(6-5\alpha )v(i,k)}{(3-2\alpha )(2-\alpha )^2},0\right) +\\&\quad -(1-\alpha )\max \left( \frac{v(N)}{3-2\alpha }+\frac{(2-6\alpha +3\alpha ^2)v(i,j)}{(3-2\alpha )(2-\alpha )^2}+\frac{v(j,k)}{2-\alpha }\right. \\&\quad \left. -\frac{2(12-25\alpha +16\alpha ^2-8\alpha ^3)v(i,k)}{(3-2\alpha )(2-\alpha )^4},0\right) . \end{aligned}$$

1.5 4. Example of computation procedure to find the payoffs for \(\alpha \in (0,1)\)

Case: \(v(i,k) \le (2-\alpha )\frac{v(j,k)}{3-2\alpha }\), j selected as proposer choosing \(\left\{ i, j\right\} \). The grand coalition is not present any more.

$$\begin{aligned}&j: v(i,j) - x_i,\\&x_i = \alpha \left( (3-2\alpha )\frac{v(i,k)}{(2-\alpha )^2} - \frac{v(j,k)}{2-\alpha }\right) + (1-\alpha )(v(i,j) - x_j), \end{aligned}$$

\(x_i\) is the minimal offer that i would accept, that is therefore equal to the expected payoff i would get by rejecting j’s offer. Note that \((3-2\alpha )\frac{v(i,k)}{(2-\alpha )^2} - \frac{v(j,k)}{2-\alpha }\) is the payoff that i would obtain if, by rejecting the proposal of j, v(ij) gets burned, leaving only v(jk) and v(ik) as non–zero coalitions. Since v(ij) gets burned with probability \(\alpha \), this value is multiplied by it. The best option for i, in case v(ij) does not get burned, is to call back \(\left\{ i,j\right\} \), but then i needs to offer j an acceptable offer \(x_j\). We then need to write down this last and t0 solve the system of two equations in two unknowns to have \(x_i\) and, then, to compute the payoff of j as proposer of \(\left\{ i,j\right\} \).

$$\begin{aligned} {\left\{ \begin{array}{ll} x_i = \alpha \left( (3-2\alpha )\frac{v(i,k)}{(2-\alpha )^2} - \frac{v(j,k)}{2-\alpha }\right) + (1-\alpha )(v(i,j) - x_j),\\ x_j = \alpha \left( \frac{v(j,k)}{2-\alpha } - \frac{v(i,k)}{(2-\alpha )^3}\right) +(1-\alpha )(v(i,j) - x_i). \end{array}\right. } \end{aligned}$$

Similar to before, \(\frac{v(j,k)}{2-\alpha } - \frac{v(i,k)}{(2-\alpha )^3}\) is the expected payoff j can get if, rejecting i’s offer, v(ij) gets burned. By solving this system we get \(x_i = (1-\alpha )\frac{v(i,j)}{2-\alpha }-(1-\alpha )\left( \frac{v(j,k)}{(2-\alpha )^2}-\frac{v(i,k)}{(2-\alpha )^3}\right) \), and the payoff obtainable by j as proposer of v(ij) is therefore equal to \(v(i,j) - x_i = \frac{v(i,j)}{2-\alpha }+(1-\alpha )\left( \frac{v(j,k)}{(2-\alpha )^2}-\frac{v(i,k)}{(2-\alpha )^3}\right) \).

Let us now consider an example of computation of payoffs when the grand coalition is called.

Case: \(v(i,k) \le (2-\alpha )\frac{v(j,k)}{3-2\alpha }\) and \(\pi _k^2 > 0\). k, as proposer, calls the grand coalition.

We then have \(k: v(N) - x_j - x_i\) and the system of equations to be solved is:

$$\begin{aligned} {\left\{ \begin{array}{ll} x_j = \alpha \left( \frac{v(i,j)}{2-\alpha }+(1-\alpha )\left( \frac{v(j,k)}{(2-\alpha )^2}-\frac{v(i,k)}{(2-\alpha )^3}\right) \right) + (1-\alpha )(v(N) - x_i - x_k),\\ x_i = \alpha \left( \frac{v(i,j)}{2-\alpha }-\frac{v(j,k)}{(2-\alpha )^2}+\frac{v(i,k)}{(2-\alpha )^3}\right) + (1-\alpha )(v(N) - x_i - x_k),\\ x_k = \alpha \left( \frac{v(i,j)}{2-\alpha }+(1-\alpha )\left( \frac{v(j,k)}{(2-\alpha )^2}-\frac{v(i,k)}{(2-\alpha )^2}\right) \right) + (1-\alpha )(v(N) - x_i - x_k), \end{array}\right. } \end{aligned}$$

Note that, in the brackets following \(\alpha \), we have the expected payoff of each player in case she rejects the offer of the proposer and the grand coalition gets burned. In particular, note that, for \(x_j\), this is exactly the payoff we obtained before since the underlying assumptions are the same. Bw solving this system of three equations in three unknowns, we get the same result of 2 with k first proposer and \(v(i,k) \le (2-\alpha )\frac{v(j,k)}{3-2\alpha }\) and \(\pi _k^2 > 0\), namely:

$$\begin{aligned} \pi _k&= \frac{v(N)}{3-2\alpha }-\frac{2v(i,j)}{(3-2\alpha )(2-\alpha )}+\alpha \left( \frac{v(j,k)}{(2-\alpha )^2}-\frac{v(i,k)}{(2-\alpha )^3}\right) ,\\ \pi _j&= \frac{(1-\alpha )v(N)}{3-2\alpha }+\frac{v(i,j)}{(3-2\alpha )(2-\alpha )}+\frac{(1-\alpha )(3-\alpha )}{(3-2\alpha )}\left( \frac{v(j,k)}{(2-\alpha )^2}-\frac{v(i,k)}{(2-\alpha )^3}\right) , \\ \pi _i&= \frac{(1-\alpha )v(N)}{3-2\alpha } - \frac{v(i,j)}{(3-2\alpha )(2-\alpha )}-\frac{(3-3\alpha +\alpha ^2)}{3-2\alpha }\left( \frac{v(j,k)}{(2-\alpha )^2}-\frac{v(i,k)}{(2-\alpha )^3}\right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogna, M. The Burning Coalition Bargaining Model. Soc Choice Welf 59, 735–768 (2022). https://doi.org/10.1007/s00355-022-01409-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00355-022-01409-3