
Aggregation of fuzzy preferences:

some rules of the mean †
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José Luis Garćıa Lapresta.

Dep. de Economı́a Aplicada (Matemáticas).

Facultad de Ciencias Económicas y Empresariales.
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Abstract. This paper studies by means of reciprocal fuzzy binary relations the

aggregation of preferences when individuals show their preferences gradually. We have

characterized neutral aggregation rules through functions from powers of the unit in-

terval in the unit interval. Furthermore, we have determined the neutral aggregation

rules that are decomposable and anonymous. In this class of rules, the collective in-

tensity of preference is the arithmetic mean of the values assigned by a function to

the individual intensities of preference. We have also considered the neutral aggre-

gation rules based on quasiarithmetic means. We have established that this class of

rules generalizes the simple majority, when individuals have ordinary preferences and

collective preferences are reciprocal.

1 Introduction

A classical problem of Social Choice Theory consists in finding collective preferences from indi-

vidual preferences, so that collective decisions can be taken, observing some ethical principles.

In most cases it has been supposed that individuals have exact preferences. However, individ-

uals generally prefer some alternatives to others with different levels of intensity. Fuzzy binary

relations reflect this information, evaluating the levels of preference intensity between 0 and 1.

Reciprocity assures that the sum of preference intensities among alternatives is always 1. Taking

individual levels of intensity of preference into account, collective decisions can more faithfully

observe individuals’ desires than the conventional case, where preferences are not gradual.

Following Bellman–Zadeh work [4], contributions of fuzzy set theory to group decision making

have been numerous. See, for example, Blin–Whinston [8], Blin [9], Nurmi [31], Bezdek–Spillman–

Spillman [5] and [6], Dubois–Prade [17], Barrett–Pattanaik–Salles [2], Yager [36] and [37], Dubois–

Koning [16], Billot [7], Barrett–Pattanaik–Salles [3], and Fodor–Roubens [22, chapter 5], among

others.

In this paper we consider aggregation rules which assign an aggregate fuzzy binary relation to

each profile of reciprocal fuzzy binary relations. The aggregate fuzzy binary relation does not

necessarily have to be reciprocal, but it is desirable for it to be so. When this relation is re-

ciprocal, collective decisions can be taken with different levels of qualification, depending upon

the ordinary preference relation that is considered based on the aggregate fuzzy relation. In our

paper we characterize neutral aggregation rules through functions from powers of [0, 1] in [0, 1].

In addition, we define a class of neutral aggregation rules based on arithmetic means associated

with functions of [0, 1]. These rules are characterized through two properties: decomposability

and anonymity. Furthermore, we characterize rules which satisfy additional properties.
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We also consider neutral aggregation rules defined by quasiarithmetic means associated with order

automorphisms of [0, 1]. Based on a classical result of Kolmogoroff [26] and Nagumo [29], five

properties characterize this class of rules: anonymity, unanimity, continuity, strict monotonicity

and associativity. Ovchinnikov [34, Th. 5.1] characterizes the quasiarithmetic aggregation rules,

when individuals have ordinary preferences, by means of some properties of fuzzy aggregation;

the restrictions of these properties on the ordinary case are similar to those given by May [28]

for simple majority. We characterize reciprocal quasiarithmetic aggregation rules and justify the

reason why they generalize the simple majority rule, when individuals have ordinary preferences.

Special majorities have been studied by Fishburn [21, chapter 6] and Ferejohn–Grether [20],

among others.

Algebraic and topological means have been studied by Aumann [1], Eckmann [18], Eckmann–

Ganea–Hilton [19]. Applications to social choice theory can be found in Chichilnisky–Heal [13],

Candeal–Induráin–Uriarte [11], Candeal–Induráin [12] and Horvath [24], [25], among others.

Moreover, in Bullen–Mitrinović–Vasić [10] there is an exhaustive study on means.

The organization of the paper is as follows. Firstly we introduce our notation and the basic

concepts employed. Section 2 characterizes neutral aggregation rules by means of auxiliary func-

tions of powers of [0, 1] in [0, 1] (Theorem 1). Moreover, we present neutral aggregation rules

that satisfy additional properties, such as anonymity, unanimity, reciprocity, monotonicity, strict

monotonicity, continuity, uniformity, additivity, decomposability and associativity, through the

auxiliary functions. We also show some relations among the properties mentioned. Section 3 is

devoted to characterizing the neutral aggregation rules that are decomposable and anonymous

(Theorem 2). In this class of rules, we characterize uniformity (Corollary 2), unanimity (Corol-

lary 3), additivity (Corollary 4), monotonicity and strict monotonicity (Corollary 5), reciprocity

(Corollary 6) and continuity (Corollary 7). Section 4 is concerned with neutral aggregation rules

where the auxiliary functions are defined by means of quasiarithmetic means associated with

order automorphisms of [0, 1]. We characterize reciprocity in the aggregation rules of quasiarith-

metic means (Proposition 1). Finally, Section 5 studies qualified majorities in voting procedures

through reciprocal aggregation rules. In this framework, we prove that reciprocal aggregation

rules of quasiarithmetic means generalize the simple majority, when individuals do not graduate

their preferences (Proposition 2). Moreover, we show that this generalization is not valid when

individuals graduate their preferences.

Notation and basic concepts. Given a set of alternativesX 6= ∅, a (strict) ordinary preference

relation on X is an asymmetric binary relation P on X [∀x, y ∈ X xP y ⇒ not y P x]. The

indifference relation associated with P , denoted by I, reflects absence of preference: x I y ⇔
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not xP y and not y P x. And the weak preference relation associated with P is P ∪ I: x (P ∪
I) y ⇔ xP y or x I y.

A fuzzy subset A of X is defined through its membership function, µA : X −→ [0, 1], where

µA(x) is the membership grade of x to A. The notion of fuzzy subset generalizes to the ordinary

subset: a fuzzy subset A of X is ordinary if µA(X) ⊆ {0, 1}. According to the notion of

fuzzy subset, a fuzzy binary relation on X is a fuzzy subset of X ×X. The set of fuzzy binary

relations on X will be denoted by R(X). If R is a fuzzy binary relation on X = {x1, . . . , xn}
with membership function µR : X ×X −→ [0, 1], we denote rij = µR (xi, xj).

The value of rij has been interpreted in the literature in mainly two ways. For Orlovsky [32],

Ovchinnikov [33] and Barrett–Pattanaik–Salles [2], among others, rij is understood as the degree

of certainty or confidence in the (strict or weak) preference of xi over xj .

On the other hand, for Bezdek–Spillman–Spillman [5], Nurmi [31], Tanino [35] and Nakamura

[30], among others, rij denotes the intensity with which xi is preferred to xj . Our paper is based

on this second viewpoint. In this framework reciprocity is a common hypothesis: rij + rji = 1

for all pair of alternatives xi, xj ∈ X. The set of reciprocal fuzzy binary relations on X will be

denoted by Rr(X).

We note that some authors, such as Bezdek–Spillman–Spillman [5] and Nurmi [31], among others,

propose reciprocity with an exception: rii = 0. These authors assume that rij = 1
2 indicates

indifference between xi and xj . Since the alternative xi must be indifferent to itself, we have

rii = 1
2 , just as happens under reciprocity. Thus, as the mentioned authors assert, rii = 0 is a

convention.

We also note that several factorizations into fuzzy strict preference and fuzzy indifference have

appeared in the literature (see Dasgupta–Deb [14]) when R ∈ R(X) modelizes fuzzy weak pref-

erences. However, under our interpretation of rij , reciprocal fuzzy binary relations do not need

to be understood either as weak or as strict fuzzy preferences.

Now we justify that reciprocal fuzzy binary relations generalize ordinary preferences. Some au-

thors, such as May [28] and Fishburn [21], use an index dij ∈ {−1, 0, 1} to distinguish, in the

ordinary case, between preference and indifference: dij = 1, if xi is preferred to xj ; dij = 0, if

xi is indifferent to xj ; and dij = −1, if xj is preferred to xi. If we take

rij =
dij + 1

2
,

then we have rij = 1 if xi is preferred to xj ; rij = 1
2 if xi is indifferent to xj ; and rij = 0 if xj is

preferred to xi. Thus, rij ∈ {0, 1
2 , 1} generates a reciprocal fuzzy binary relation. Consequently,

ordinary preferences can be considered as a particular case of reciprocal fuzzy binary relations.
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In the sequel we suppose that fuzzy binary relations that represent preferences of individuals are

reciprocal. These relations have a very important property: for each prefixed level of intensity

α ≥ 1
2 there exists an ordinary preference relation.

Given α ∈ [0, 1), we define the ordinary binary relation of strict level α associated with R as

Pα = µ−1
R ((α, 1]) = {(xi, xj) ∈ X ×X | rij > α},

i.e., xi Pα xj ⇔ rij > α. We note that if α, β ∈ [0, 1] are such that α ≤ β, then Pβ ⊆ Pα;

i.e., for each pair of alternatives xi, xj ∈ X: xi Pβ xj ⇒ xi Pα xj . We note that every reciprocal

fuzzy binary relation defines, in a natural way, a set of preference ordinary relations: if R is a

reciprocal fuzzy binary relation on X, then for each α ∈ [1
2 , 1) the ordinary binary relation Pα

is a preference relation. For α ∈ [1
2 , 1), the indifference relation associated with Pα, denoted

by Iα, is defined by xi Iα xj ⇔ 1 − α ≤ rij ≤ α. And the ordinary weak preference relation

associated with Pα, Pα ∪ Iα, is defined by xi (Pα ∪ Iα)xj ⇔ rij ≥ 1 − α. So, for each chosen

level α ∈ [1
2 , 1), R has associated three ordinary relations: the preference Pα, the indifference

Iα and the weak preference Pα ∪ Iα.

Fuzzy binary relations generalize ordinary binary relations. However, no reciprocal fuzzy binary

relation is ordinary: from rii = 1
2 for all xi ∈ X, we have 1

2 ∈ µR (X×X); hence, it is not verified

µR (X ×X) ⊆ {0, 1}. Thus, we will distinguish between crisp preferences, where intensity levels

are extreme – 0, 1 – or intermediate – 1
2–, and gradual preferences, where other intensity levels

appear.

So, individuals have crisp preferences when they do not graduate the intensity of preference among

alternatives. In this case, for each pair of alternatives xi, xj ∈ X:

1. If they prefer xi to xj , they do so in an extreme way: xi Pα xj for all α ∈ [1
2 , 1); i.e.,

rij = 1 and then rji = 1− rij = 0.

2. Analogously, if they prefer xj to xi, then rji = 1, and rij = 1− rji = 0.

3. If they are indifferent between xi and xj , then they do not prefer either alternative to the

other: neither xi Pα xj nor xj Pα xi, for all α ∈ [1
2 , 1), i.e., rij ≤ α and rji ≤ α for all

α ∈ [1
2 , 1); hence, 1− α ≤ rij ≤ α for all α ∈ [1

2 , 1), so rij = rji = 1
2 .

Consequently, rij ∈ {0, 1
2 , 1} for all pair of alternatives xi, xj ∈ X.

On the contrary, an individual has gradual preferences when rij /∈ {0, 1
2 , 1}, for some alternatives

xi, xj ∈ X.
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2 Neutral aggregation rules

We consider m individuals, m ≥ 2, showing their preferences on a finite set of alternatives

X = {x1, . . . , xn}, n ≥ 2, by means of reciprocal fuzzy binary relations.

Definition 1

An aggregation rule on X is a sequence of functions F = {Fm}m≥2, such that Fm : Rr(X)m −→
R(X) assigns to each profile of reciprocal fuzzy binary relations, (R1, . . . , Rm) ∈ Rr(X)m, a fuzzy

binary relation, not necessarily reciprocal, R = Fm(R1, . . . , Rm) ∈ R(X) called aggregate.

Notation. Given two alternatives xi, xj ∈ X, rkij = µRk(xi, xj) is the intensity level which

individual k prefers xi to xj ; rij = µR(xi, xj) denotes the intensity level which alternative xi

is collectivelly preferred to xj , through the aggregate relation R.

Definition 2

Let F be an aggregation rule on X.

1. F satisfies independence of irrelevant alternatives if for all pair of profiles (R1, . . . , Rm),

(S1, . . . , Sm) ∈ Rr(X)m and all pair of alternatives xi, xj ∈ X:

∀k ∈ {1, . . . ,m} rkij = skij ⇒ rij = sij .

2. F is neutral if for all pair of profiles (R1, . . . , Rm), (S1, . . . , Sm) ∈ Rr(X)m and all alter-

natives xi, xj , xp, xq ∈ X:

∀k ∈ {1, . . . ,m} rkij = skpq ⇒ rij = spq.

3. F is monotonic if for all pair of profiles (R1, . . . , Rm), (S1, . . . , Sm) ∈ Rr(X)m and all pair

of alternatives xi, xj ∈ X:

∀k ∈ {1, . . . ,m} rkij ≥ skij ⇒ rij ≥ sij .

4. F is strictly monotonic if for all pair of profiles (R1, . . . , Rm), (S1, . . . , Sm) ∈ Rr(X)m and

all pair of alternatives xi, xj ∈ X:(
∀k ∈ {1, . . . ,m} rkij ≥ skij and ∃l ∈ {1, . . . ,m} rlij > slij

)
⇒ rij > sij .
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5. F is anonymous if for all profile (R1, . . . , Rm) ∈ Rr(X)m and all bijective function

σ : {1, . . . ,m} −→ {1, . . . ,m}:

Fm
(
Rσ(1), . . . , Rσ(m)

)
= Fm(R1, . . . , Rm).

6. F is unanimous if for all profile (R1, . . . , Rm) ∈ Rr(X)m, all pair of alternatives xi, xj ∈ X
and all c ∈ [0, 1]:

∀k ∈ {1, . . . ,m} rkij = c ⇒ rij = c.

7. F is uniform if for all pair of profiles (R1, . . . , Rp) ∈ Rr(X)p, (S1, . . . , Sq) ∈ Rr(X)q and

all pair of alternatives xi, xj ∈ X:(
∀k ∈ {1, . . . , p} ∀l ∈ {1, . . . , q} rkij = slij

)
⇒ rij = sij .

8. F is reciprocal if for all profile (R1, . . . , Rm) ∈ Rr(X)m, the aggregate relation

R = Fm(R1, . . . , Rm) is reciprocal.

Remarks.

1. Every neutral or monotonic aggregation rule satisfies independence of irrelevant alternatives.

2. Every strictly monotonic aggregation rule that satisfies independence of irrelevant alterna-

tives is monotonic.

3. Every unanimous aggregation rule is uniform.

4. In monotonic aggregation rules, unanimity is equivalent to the fact that collective intensity

of preference is found between minimal and maximal individual intensities.

In the following theorem we characterize neutral aggregation rules by means of functions. This

result is related to another one in the crisp theory of welfare which says that there exists a social

welfare function generating a given Paretian social welfare functional that satisfies the pairwise

independence condition (see Mas-Colell–Whinston–Green [27, Proposition 22.D.1, p. 833]). This

fact has been brought to our attention by an anonymous referee.

Theorem 1

If F is an aggregation rule on X, then the following conditions are equivalent:

1. F is neutral.
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2. For all m ≥ 2 there exists a unique function fm : [0, 1]m −→ [0, 1], such that for all pair of

alternatives xi, xj ∈ X: rij = fm(r1
ij , . . . , r

m
ij ).

Proof.

1 ⇒ 2: By neutrality, F satisfies independence of irrelevant alternatives. So, given m ≥ 2

and xi, xj ∈ X with i 6= j, there exists a function f ijm : [0, 1]m −→ [0, 1], such that rij =

f ijm(r1
ij , . . . , r

m
ij ), for each profile (R1, . . . , Rm) ∈ Rr(X)m. We now show that if xp, xq ∈ X and

p 6= q, then fpqm = f ijm . Given ā = (a1, . . . , am) ∈ [0, 1]m, there exist (R1, . . . , Rm), (S1, . . . , Sm) ∈
Rr(X)m, such that ak = rkij = skpq for k = 1, . . . ,m. By neutrality of F , we have

f ijm(ā) = f ijm(r1
ij , . . . , r

m
ij ) = rij = spq = fpqm (s1

pq, . . . , s
m
pq) = fpqm (ā).

Hence, there exists fm : [0, 1]m −→ [0, 1], such that for all profile (R1, . . . , Rm) ∈ Rr(X)m and

all pair of alternatives xi, xj ∈ X, we have rij = fm(r1
ij , . . . , r

m
ij ), if j 6= i.

It remains to be shown that rii = fm(1
2 , . . . ,

1
2). By reciprocity of the individual relations, we

have rkii = 1
2 for all k ∈ {1, . . . ,m}. Given two alternatives xp, xq ∈ X with p 6= q, let

(S1, . . . , Sm) ∈ Rr(X)m such that skpq = 1
2 for all k ∈ {1, . . . ,m}. Then, by neutrality of F , we

have rii = spq = fm(1
2 , . . . ,

1
2). Uniqueness of fm is guaranteed by construction.

2 ⇒ 1: Let (R1, . . . , Rm), (S1, . . . , Sm) ∈ Rr(X)m and xi, xj , xp, xq ∈ X, such that rkij = skpq

for all k ∈ {1, . . . ,m}. Then we have rij = fm(r1
ij , . . . , r

m
ij ) = fm(s1

pq, . . . , s
m
pq) = spq.

Notation.

1. According to Theorem 1, every neutral aggregation rule F has an associated sequence of

functions {fm}m≥2, where fm : [0, 1]m −→ [0, 1], that we call auxiliary functions associated

to F .

2. Reciprocally, let {fm}m≥2 be a sequence of functions, where fm : [0, 1]m −→ [0, 1]. From

this sequence can be defined a neutral aggregation rule F , through rij = fm(r1
ij , . . . , r

m
ij ), for

all pair of alternatives xi, xj ∈ X. We say that F is associated with {fm}m≥2. Obviously,

these functions are the auxiliary functions associated with F .

By means of Theorem 1, we can characterize some properties of a neutral aggregation rule F ,

through conditions on the auxiliary functions associated with F .

Notation. Let ā, b̄ ∈ [0, 1]m, where ā = (a1, . . . , am), b̄ = (b1, . . . , bm). With ā ≥ b̄ we

denote ai ≥ bi for all i ∈ {1, . . . ,m}. With ā > b̄ we understand ā ≥ b̄ and ai > bi for some

i ∈ {1, . . . ,m}. If c ∈ [0, 1] and m ≥ 2, with c̄ we denote (c, . . . , c) ∈ [0, 1]m.
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Corollary 1

Let F be a neutral aggregation rule.

1. F is monotonic if and only if for all auxiliary function fm : [0, 1]m −→ [0, 1] associated

with F :

∀ā, b̄ ∈ [0, 1]m
(
ā ≥ b̄ ⇒ fm(ā) ≥ fm(b̄)

)
.

2. F is strictly monotonic if and only if for all auxiliary function fm : [0, 1]m −→ [0, 1]

associated with F :

∀ā, b̄ ∈ [0, 1]m
(
ā > b̄ ⇒ fm(ā) > fm(b̄)

)
.

3. F is anonymous if and only if for all auxiliary function fm : [0, 1]m −→ [0, 1] associated

with F and all bijection σ : {1, . . . ,m} −→ {1, . . . ,m}:

∀ā ∈ [0, 1]m fm(aσ(1), . . . , aσ(m)) = fm(ā).

4. F is unanimous if and only if for all auxiliary function fm : [0, 1]m −→ [0, 1] associated

with F :

∀c ∈ [0, 1] fm(c̄) = c.

5. F is uniform if and only if for all pair of auxiliary functions fp : [0, 1]p −→ [0, 1] and

fq : [0, 1]q −→ [0, 1] associated with F :

∀c ∈ [0, 1] fp(c̄) = fq(c̄).

6. F is reciprocal if and only if for all auxiliary function fm : [0, 1]m −→ [0, 1] associated with

F :

∀ā ∈ [0, 1]m fm(1̄− ā) = 1− fm(ā).

Now we present several properties of the neutral aggregation rules that we use in our characteri-

zations. These properties can be interpreted in the framework of the social choice theory.

Continuity means that small changes in individual intensities of preference produce small changes

in the collective intensity of preference.

Additivity is a strong property used in the algebraic approach to social choice. It means that if

the individual intensities of preference increase in some quantities, then the collective intensity

of preference is the sum of both the collective intensity of preference corresponding to the initial

individual intensities and also, the collective intensity of preference corresponding to the added
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quantities. We would like to remark that our additivity is related to another one used in utility

theory.

Decomposability, a weaker property than additivity, means that the collective intensity of prefer-

ence is the sum of the collective intensities of preference when, in each case, only one individual

shows his/her preference and the others have a preference intensity of zero. This property is

similar to a particular case of a very common property that appears in utility theory, called sep-

arability and also additivity. So, under some assumptions such as independence and essentiality,

Debreu [15] proves that complete preorderings in product spaces can be represented by continuous

and additive utility functions (see also Gorman [23]).

Lastly, associativity guarantees that each individual intensity of preference of a group can be sub-

stituted to its partial aggregation intensity without changing the collective intensity of preference.

Definition 3

Let F be a neutral aggregation rule.

1. F is continuous if all auxiliary functions associated with F are continuous.

2. F is additive if for all auxiliary function fm : [0, 1]m −→ [0, 1] associated with F :

∀ā, b̄ ∈ [0, 1]m
(
ā+ b̄ ∈ [0, 1]m ⇒ fm(ā+ b̄) = fm(ā) + fm(b̄)

)
.

3. F is decomposable if for all auxiliary function fm : [0, 1]m −→ [0, 1] associated with F :

∀ā ∈ [0, 1]m fm(ā) = fm(a1, 0, . . . , 0) + · · ·+ fm(0, . . . , 0, am).

4. F is associative if for all auxiliary functions fp : [0, 1]p −→ [0, 1] and fp+q : [0, 1]p+q −→
[0, 1] associated with F , with p ≥ 2 and q ≥ 0:

∀ā ∈ [0, 1]p ∀b̄ ∈ [0, 1]q fp+q(ā, b̄) = fp+q(fp(ā), . . . , fp(ā), b̄).

Remarks.

1. Every neutral and additive aggregation rule is decomposable and monotonic.

2. Every neutral, associative and strictly monotonic aggregation rule is unanimous.

3. Every auxiliary function fm : [0, 1]m −→ [0, 1] of a decomposable neutral aggregation rule

satisfies fm(0̄) = 0.
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4. There exist neutral and decomposable aggregation rules that are not monotonic and, hence,

not additive either, for instance the one associated with the sequence of functions:

fm(ā) =
1

m

m∑
i=1

ai (1− ai) , m ≥ 2.

5. There exist neutral and monotonic aggregation rules that are not decomposables and, hence,

not additive either, for instance the one associated with the sequence of functions:

fm(ā) = a1 · · · · · am , m ≥ 2.

3 Aggregation rules of the arithmetic means

In Theorem 2 we characterize the neutral aggregation rules that are decomposable and anony-

mous. In these rules, collective intensity of preference is the arithmetic mean of the values assigned

by a function of [0, 1] at the individual levels of intensity of preference. As properties are added

to this class of aggregation rules, these properties are reflected in the functions of [0, 1].

Definition 4

Given a sequence of functions {ϕm}m≥2, where ϕm : [0, 1] −→ [0, 1] for all m ≥ 2, we define

the aggregation rule of the arithmetic mean associated with {ϕm}m≥2 as the neutral aggrega-

tion rule F associated with {fm}m≥2, where fm : [0, 1]m −→ [0, 1] is defined by

fm(a1, . . . , am) =
ϕm(a1) + · · ·+ ϕm(am)

m
.

When the sequence of functions is constant, i.e. ϕm = ϕ for all m ≥ 2, we will say that F is

the aggregation rule of the arithmetic mean associated with ϕ. In this case, if ϕ is the identity

function, we will say that F is the aggregation rule of the arithmetic mean.

Theorem 2

If F is a neutral aggregation rule, then the following conditions are equivalent:

1. F is decomposable and anonymous.

2. There exists a unique sequence of functions {ϕm}m≥2, such that ϕm(0) = 0 for all m ≥ 2

and F is the aggregation rule of the arithmetic mean associated with {ϕm}m≥2.
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Proof.

1 ⇒ 2: Fixed m, let ϕm : [0, 1] −→ [0, 1] be the function defined by ϕm(c) = fm(c̄) for all

c ∈ [0, 1], where fm : [0, 1]m −→ [0, 1] is the corresponding auxiliary function associated with F .

Then, ϕm(0) = fm(0̄) = 0. Moreover, for all ā ∈ [0, 1]m, it satisfies

mfm(ā) = mfm(a1, 0, . . . , 0) + · · ·+mfm(0, . . . , 0, am) =

= fm(ā1) + · · ·+ fm(ām) = ϕm(a1) + · · ·+ ϕm(am).

In order to justify uniqueness, let {ψm}m≥2 be a sequence of functions that satisfies what is

required. Then, for all c ∈ [0, 1] we have

ϕm(c) = fm(c̄) =
1

m
mψm(c) = ψm(c).

2⇒ 1: For all auxiliary function fm : [0, 1]m −→ [0, 1] associated with F and all ā ∈ [0, 1]m, it

satisfies

fm(a1, 0, . . . , 0) + · · ·+ fm(0, . . . , 0, am) =

=
1

m

(
ϕm(a1) + ϕm(0) + · · ·+ ϕm(0)

)
+ · · ·+ 1

m

(
ϕm(0) + · · ·+ ϕm(0) + ϕm(am)

)
=

=
1

m

(
ϕm(a1) + · · ·+ ϕm(am)

)
= fm(ā).

Obviously, F is anonymous.

Corollary 2

If F is a neutral aggregation rule, then the following conditions are equivalent:

1. F is decomposable, anonymous and uniform.

2. There exists a unique function ϕ, with ϕ(0) = 0, such that F is the aggregation rule of

the arithmetic mean associated with ϕ.

Proof.

1 ⇒ 2: If in the proof of Theorem 2 we consider F uniform, we have ϕp(c) = fp(c̄) = fq(c̄) =

ϕq(c) for all p, q ≥ 2 and all c ∈ [0, 1]. Hence, there exists ϕ such that ϕm = ϕ for all m ≥ 2.

Consequently, F is the aggregation rule of the arithmetic mean associated with ϕ.

2⇒ 1: Obvious.
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Corollary 3

If F is a neutral aggregation rule, then the following conditions are equivalent:

1. F is decomposable, unanimous and anonymous.

2. F is the aggregation rule of the arithmetic mean.

Proof.

1 ⇒ 2: If in the proof of Theorem 2 we consider F unanimous, we have ϕm(c) = fm(c̄) = c

for all m ≥ 2 and c ∈ [0, 1], i.e. ϕm is the identity function for all m ≥ 2. Hence, F is the

aggregation rule of the arithmetic mean.

2⇒ 1: Obvious.

Remarks.

1. A similar result to Corollary 3 has been proved on topological vectorial spaces of alternative

sets, by Candeal–Induráin–Uriarte [11], outside of the fuzzy preferences framework.

2. When the set of alternatives has a group operation, Candeal–Induráin [12, Theorem 1]

proved a result based in Chichilnisky–Heal [13]: every group Chichilnisky n-rule (group

homomorphism, anonymous and unanimous aggregation rule) is a convex mean (a general-

ization of the arithmetic mean for groups).

3. The aggregation rule of the arithmetic mean satisfies all the properties considered in the

paper (Definitions 2 and 3).

Corollary 4

If F is a neutral aggregation rule, then the following conditions are equivalent:

1. F is additive and anonymous.

2. There exists a unique sequence of functions {ϕm}m≥2, that satisfies ϕm(a+ b) = ϕm(a) +

ϕm(b) for all m ≥ 2 and a, b ∈ [0, 1] with a + b ∈ [0, 1], such that F is the aggregation

rule of the arithmetic mean associated with {ϕm}m≥2.
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Proof. We consider Theorem 2 and its proof.

1 ⇒ 2: We take into account that additive aggregation rules are decomposable. Let a, b ∈ [0, 1]

be such that a+ b ∈ [0, 1]. Then a+ b ∈ [0, 1]m and

ϕm(a+ b) = fm(a+ b) = fm(ā+ b̄) = fm(ā) + fm(b̄) = ϕm(a) + ϕm(b).

2 ⇒ 1: From additivity of ϕm, we have ϕm(0) = 0 and additivity of F . By Theorem 2, F is

anonymous.

Corollary 5

If F is a neutral aggregation rule, then the following conditions are equivalent:

1. F is decomposable, anonymous and monotonic (strictly monotonic).

2. There exists a unique sequence of increasing (strictly increasing) functions {ϕm}m≥2, with

ϕm(0) = 0 for all m ≥ 2, such that F is the aggregation rule of the arithmetic mean

associated with {ϕm}m≥2.

Proof. We consider Theorem 2 and its proof. We prove the equivalence for monotonicity (for

strict monotonicity the proof is analogous).

1⇒ 2: We need only show that ϕm is increasing. Let a, b ∈ [0, 1] such that a ≥ b; then ā ≥ b̄

and ϕm(a) = fm(ā) ≥ fm(b̄) = ϕm(b).

2 ⇒ 1: The only thing that needs proof is that F is monotonic. Let ā, b̄ ∈ [0, 1]m such that

ā ≥ b̄; then ai ≥ bi and ϕm(ai) ≥ ϕm(bi) for all i ∈ {1, . . . ,m}. Hence

fm(ā) =
1

m

m∑
i=1

ϕm(ai) ≥
1

m

m∑
i=1

ϕm(bi) = fm(b̄).

Two inmediate consequences of Theorem 2 are the following corollaries.

Corollary 6

If F is a neutral aggregation rule, then the following conditions are equivalent:

1. F is decomposable, anonymous and reciprocal.
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2. There exists a unique sequence of functions {ϕm}m≥2, with ϕm(0) = 0 and ϕm(1 − a) =

1 − ϕm(a) for all m ≥ 2 and all a ∈ [0, 1], such that F is the aggregation rule of the

arithmetic mean associated with {ϕm}m≥2.

Corollary 7

If F is a neutral aggregation rule, then the following conditions are equivalent:

1. F is decomposable, anonymous and continuous.

2. There exists a unique sequence of continuous functions {ϕm}m≥2, with ϕm(0) = 0 for

all m ≥ 2, such that F is the aggregation rule of the arithmetic mean associated with

{ϕm}m≥2.

4 Aggregation rules of the quasiarithmetic means

Firstly we introduce order automorphisms of [0, 1] and we deduce several consequences.

Definition 5

A function ϕ : [0, 1] −→ [0, 1] is an order automorphism if it is bijective and increasing.

Lemma 1

If ϕ : [0, 1] −→ [0, 1] is an order automorphism, then:

1. ϕ is strictly increasing.

2. ϕ−1 is an order automorphism.

3. ϕ(0) = 0 and ϕ(1) = 1.

4. ϕ is continuous.

5. ∀a ∈ [0, 1] ϕ(1− a) = 1− ϕ(a) ⇔ ∀a ∈ [0, 1] ϕ−1(1− a) = 1− ϕ−1(a).

Proof.
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1. Given a, b ∈ [0, 1], such that a < b, we have ϕ(a) 6= ϕ(b) and ϕ(a) ≤ ϕ(b); hence

ϕ(a) < ϕ(b).

2. Obviously ϕ−1 is bijective. If ϕ−1 is not increasing, there exist a, b ∈ [0, 1], such that

a ≤ b and ϕ−1(a) > ϕ−1(b). Since ϕ is strictly increasing, we have a = ϕ(ϕ−1(a)) >

ϕ(ϕ−1(b)) = b, which violates a ≤ b.

3. If ϕ(0) 6= 0, then there exists a ∈ (0, 1] such that ϕ(a) = 0, contrary to ϕ be increasing.

Analogously, we obtain ϕ(1) = 1.

4. We show that ϕ is continuous in an arbitrary a0 ∈ (0, 1). Given ε > 0, let a1, a2 ∈ [0, 1]

such that ϕ(a1) = max {0, ϕ(a0) − ε}, ϕ(a2) = min {1, ϕ(a0) + ε}. Since ϕ−1 is strictly

increasing, we have a1 < a0 < a2. If δ = min {a0 − a1, a2 − a0}, since ϕ is strictly

increasing, for all a ∈ [0, 1] we have

|a− a0| < δ ⇒ |ϕ(a)− ϕ(a0)| < ε.

It can similarly be established the continuity of ϕ in 0 and 1.

5. It is sufficient to prove that if the statement is true for an order automorphism ϕ, then it is

also true for ϕ−1. We prove ϕ−1(1− a) = 1− ϕ−1(a) for all a ∈ [0, 1]. If b = ϕ−1(1− a),

we have 1− a = ϕ(b), i.e. a = 1− ϕ(b) = ϕ(1− b). Hence,

1− ϕ−1(a) = 1− ϕ−1(ϕ(1− b)) = 1− (1− b) = b = ϕ−1(1− a).

Now we introduce the aggregation rules of the quasiarithmetic means associated with order auto-

morphisms. The result of Kolmogoroff [26] and Nagumo [29] allows us to characterize this class

of aggregation rules in a natural way from the point of view of collective decision making.

Definition 6

Given an order automorphism ϕ : [0, 1] −→ [0, 1], we define the aggregation rule of the quasiarith-

metic mean associated with ϕ as the neutral aggregation rule associated with the sequence of

functions {fm}m≥2, where fm : [0, 1]m −→ [0, 1] is definided by

fm(a1, . . . , am) = ϕ−1

(
ϕ(a1) + · · ·+ ϕ(am)

m

)
.

Obviously, the aggregation rule of the quasiarithmetic mean associated with the identity is the

aggregation rule of the arithmetic mean. Using a similar idea to the proof of Proposition 1, it

can be proved that the aggregation rule of the quasiarithmetic mean associated with ϕ is the

aggregation rule of the arithmetic mean only when ϕ is the identity.
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Theorem 3 (Kolmogoroff – Nagumo, 1930)

If F is a neutral aggregation rule, then the following conditions are equivalent:

1. F is an aggregation rule of some quasiarithmetic mean.

2. F is anonymous, unanimous, continuous, strictly monotonic and associative.

Proof.

1⇒ 2: The verification is purely mechanical.

2⇒ 1: It is an inmediate consequence of Kolmogoroff [26] and Nagumo [29].

Remarks.

1. In Theorem 3, unanimity is redundant, since it is consequence of associativity and strict

monotonicity.

2. The aggregation rules of quasiarithmetic means are not necessarily reciprocal; for instance,

if ϕ(a) = a2 for all a ∈ [0, 1], we have f2(1− 0.6, 1− 0.8) 6= 1− f2(0.6, 0.8).

In the following proposition we give a necessary and sufficient condition for reciprocity in aggre-

gation rules of the quasiarithmetic means.

Proposition 1

If F is the aggregation rule of the quasiarithmetic mean associated with ϕ, then

F is reciprocal ⇔ ∀a ∈ [0, 1] ϕ(1− a) = 1− ϕ(a).

Proof.

⇒) We prove the property for ϕ−1. We first prove the property for rational numbers. For a = 0

and a = 1 it is obviousus. If a ∈ (0, 1) is rational, there exist m, p ∈ IN with gcd(m, p) = 1,

such that a =
p

m
, with p < m and m ≥ 2. If we consider b̄ = (b1, . . . , bm) ∈ [0, 1]m such that

bi =

{
1 ∀i ∈ {1, . . . , p}
0 ∀i ∈ {p+ 1, . . . ,m},
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then, we have

fm(b̄) = ϕ−1

(
1

m

( p∑
i=1

ϕ(1) +
m∑

i=p+1

ϕ(0)
))

= ϕ−1
( 1

m
pϕ(1)

)
= ϕ−1

( p
m

)
.

On the other hand,

fm(b̄) = fm
(
1̄− (1̄− b̄)

)
= 1− fm(1̄− b̄) = 1− ϕ−1

(
1

m

( p∑
i=1

ϕ(0) +
m∑

i=p+1

ϕ(1)
))

=

= 1− ϕ−1
( 1

m
(m− p)ϕ(1)

)
= 1− ϕ−1

(m− p
m

)
= 1− ϕ−1

(
1− p

m

)
.

Hence, ϕ−1
( p
m

)
= 1− ϕ−1

(
1− p

m

)
, i.e.,

ϕ−1(1− a) = ϕ−1
(
1− p

m

)
= 1− ϕ−1

( p
m

)
= 1− ϕ−1(a).

For irrationals, it is sufficient take into account continuity of ϕ−1 and density of rationals in IR.

Given a ∈ (0, 1) irrational, there exists a sequence of rationals of [0, 1], {an}∞n=1, that converges

to a. Then, lim
n→∞

(1− an) = 1− a and, by continuity of ϕ−1, we have

ϕ−1(1− a) = lim
n→∞

ϕ−1(1− an) = lim
n→∞

(
1− ϕ−1(an)

)
= 1− lim

n→∞
ϕ−1(an) = 1− ϕ−1(a).

⇐) Let ā ∈ [0, 1]m. By properties of ϕ, we have:

fm(1̄− ā) = ϕ−1

(
1

m

m∑
i=1

ϕ(1− ai)
)

= ϕ−1

(
1

m

m∑
i=1

(1− ϕ(ai))

)
=

= ϕ−1

(
1− 1

m

m∑
i=1

ϕ(ai)

)
= 1− ϕ−1

(
1

m

m∑
i=1

ϕ(ai)

)
= 1− fm(ā).

5 Qualified majorities

We now analize, by means of reciprocal fuzzy binary relations, voting procedures by qualified

majorities, both when individuals have crisp or gradual preferences.

Given a reciprocal aggregation rule F , for every finite number of individuals m, the func-

tion Fm : Rr(X)m −→ R(X) assigns a reciprocal fuzzy binary relation, the aggregate R =

Fm(R1, . . . , Rm), to each profile of reciprocal fuzzy binary relations (R1, . . . , Rm) ∈ Rr(X)m. We

denote by P(X) the set of ordinary preference relations on X. We know that for each α ∈ [1
2 , 1)

we have a function Πα : Rr(X) −→ P(X) that assigns to R the ordinary relation of prefer-

ence, Πα(R) = Pα = {(xi, xj) ∈ X × X | rij > α}. This relation shows which alternatives are

collectivelly preferred to others with a intensity level greater to α.
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Definition 7

Let F be a reciprocal aggregation rule on X, m individuals and α ∈ [1
2 , 1). We define

Fαm = Πα ◦ Fm : Rr(X)m −→ P(X)

the α–majority aggregation function associated with F and m.

Rr(X)m

(R1, . . . , Rm)

Fm−→
7−→

Rr(X)

R

Πα−→
7−→

P(X)

Pα

Remark. Using qualified majorities for collective decision making, corresponding to increasing

levels of α, some considerations are taken into account:

– A greater support from individuals is necessary for defeating one alternative to another, the

more support being needed the greater α is.

– The voting procedures are less decisive, since collective indifference appears more frequently

(xi Iα xj ⇔ 1− α ≤ rij ≤ α ).

– It decreases the possibility of existence of cycles in collective preferences (voting paradox).

Since there are less alternatives collectively preferred to other, it is more possible that

collective preference will be acyclic. Consequently, more non–dominated alternatives in all

non–empty subsets will exist (see Ferejohn–Grether [20, Th. 1]).

It is clear that all reciprocal aggregation rules, particularly these ones studied in this paper,

permit establish voting procedures with different levels of qualification.

Now we justify that reciprocal aggregation rules of the quasiarithmetic means generalize the simple

majority when individuals have crisp preferences. In this case, the 0.5– majority aggregation

function associated with every reciprocal aggregation rule of a quasiarithmetic mean provides the

same results as the simple majority.

Proposition 2

Let F be the quasiarithmetic mean aggregation rule on X associated with ϕ. If F is reciprocal

and all individuals have crisp preferences, then F 0.5
m coincide with simple majority, for all m ≥ 2.

Proof. We suppose m individuals with crisp preferences in X:

∀k ∈ {1, . . . ,m} ∀xi, xj ∈ X rkij ∈ {0, 0.5, 1} .
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Firstly, we note ϕ(0) = 0, ϕ(1) = 1 and, by reciprocity, ϕ(0.5) = 0.5. Moreover, we have:

m = #{k | xi P k0.5 xj}+ #{k | xi Ik0.5 xj}+ #{k | xj P k0.5 xi} =

= #{k | rkij = 1}+ #{k | rkij = 0.5}+ #{k | rkij = 0}.

Now, let P s the aggregate preference relation corresponding to simple majority, i.e. xi P s xj ⇔
#{k | rkij = 1} > #{k | rkij = 0}, and P 0.5 = F 0.5

m (R1, . . . , Rm) .

Then we have:

xi P 0.5 xj ⇔ rij > 0.5 ⇔ ϕ−1

(
1

m

m∑
k=1

ϕ(rkij)

)
> 0.5 ⇔ 1

m

m∑
k=1

ϕ(rkij) > ϕ(0.5) = 0.5 ⇔

⇔ 1

m

(
#{k | rkij = 1} · 1 + #{k | rkij = 0.5} · 0.5 + #{k | rkij = 0} · 0

)
> 0.5 ⇔

⇔ #{k | rkij = 1}+ #{k | rkij = 0.5} · 0.5 > 0.5 ·m ⇔

⇔ #{k | rkij = 1} > 0.5 ·
(
m−#{k | rkij = 0.5}

)
⇔

⇔ #{k | rkij = 1} > 0.5 ·
(
#{k | rkij = 1}+ #{k | rkij = 0}

)
⇔

⇔ #{k | rkij = 1} > #{k | rkij = 0} ⇔ xi P s xj .

Remark. Let 5 individuals with gradual preferences on two alternatives x1 and x2:

r1
12 = r2

12 = r3
12 = 0.6 (r1

21 = r2
21 = r3

21 = 0.4)

r4
12 = r5

12 = 0.1 (r4
21 = r5

21 = 0.9).

If individuals have to show their preferences in a crisp way, through P0.5, then x1 defeats x2 by

simple majority, since there are 3 individuals that prefer x1 to x2.

However, if individuals can show their preferences in their natural gradual way, then using the

aggregation rule of the arithmetic mean, through P 0.5, x2 defeats x1, since

r21 =
5∑

k=1

rk21

5
=

3 · 0.4 + 2 · 0.9
5

= 0.6 > 0.5.

We note x2 Pα x1 for all α ∈ [0.5, 0.6); if α ∈ [0.6, 1) we have x2 Iα x1. Moreover, for not

α ∈ [0.5, 1) we obtain x1 Pα x2.

We can conclude that the result obtained applying simple majority when individuals only show

their preferred alternatives can be different to that obtained applying an aggregation rule of some

quasiarithmetic mean, when individuals show intensity levels of their preferences.
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