Skip to main content
Log in

Global Optimization in Any Minkowski Metric: A Permutation-Translation Simulated Annealing Algorithm for Multidimensional Scaling

  • Published:
Journal of Classification Aims and scope Submit manuscript

Abstract

It is well known that considering a non-Euclidean Minkowski metric in Multidimensional Scaling, either for the distance model or for the loss function, increases the computational problem of local minima considerably. In this paper, we propose an algorithm in which both the loss function and the composition rule can be considered in any Minkowski metric, using a multivariate randomly alternating Simulated Annealing procedure with permutation and translation phases. The algorithm has been implemented in Fortran and tested over classical and simulated data matrices with sizes up to 200 objects. A study has been carried out with some of the common loss functions to determine the most suitable values for the main parameters. The experimental results confirm the theoretical expectation that Simulated Annealing is a suitable strategy to deal by itself with the optimization problems in Multidimensional Scaling, in particular for City-Block, Euclidean and Infinity metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Fernando Vera, Willem J. Heiser or Alex Murillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vera, J., Heiser, W. & Murillo, A. Global Optimization in Any Minkowski Metric: A Permutation-Translation Simulated Annealing Algorithm for Multidimensional Scaling. Journal of Classification 24, 277–301 (2007). https://doi.org/10.1007/s00357-007-0020-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00357-007-0020-1

Keywords

Navigation