Skip to main content
Log in

On the Ultrametric Generated by Random Distribution of Points in Euclidean Spaces of Large Dimensions with Correlated Coordinates

  • Published:
Journal of Classification Aims and scope Submit manuscript

Abstract

Recently a general theorem stating that the matrix of normalized Euclidean distances on the set of specially distributed random points in the n-dimensional Euclidean space n with independent coordinates converges in probability as n→∞ to the ultrametric matrix had been proved. The main theorem of the present paper extends this result to the case of weakly correlated coordinates of random points. Prior to formulating and stating this result we give two illustrative examples describing particular algorithms of generation of such nearly ultrametric spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • BILLINGSLEY, P. (1999), Convergence of Probability Measures, New York: John Wiley and Sons, Inc.

    Book  MATH  Google Scholar 

  • DRAGOVICH, B., KHRENNIKOV, A.Y., KOZYREV, S.V., and VOLOVICH, I.V. (2009), “On p-adic Mathematical Physics”, p-Adic Numbers Ultrametric Analysis, and Applications 1(1), 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  • HALL, P., MARRON, J.S., and NEEMAN, A. (2005), “Geometric Representation of High Dimension Low Sample Size Data”, Journal of the Royal Statistical Society B 67, 427–444.

    Article  MathSciNet  MATH  Google Scholar 

  • LERMAN, I.C. (1981), Classification et Analyse Ordinale des Données, Paris: Dunod.

    MATH  Google Scholar 

  • MISSAROV, M.D. (2012), “The Degree of Ultrametricity of a Metric Space”, Physics and Mathematics Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz. Mat. Nauki 154(4), 139–145 (in Russian).

    MathSciNet  Google Scholar 

  • MURTAGH, F. (2004), “On Ultrametricity, Data Coding, and Computation”, Journal of Classification 21, 167–184.

    Article  MathSciNet  MATH  Google Scholar 

  • MURTAGH, F. (2005), “Identifying the Ultrametricity of Time Series”, European Physical Journal B 43, 573–579.

    Article  Google Scholar 

  • MURTAGH, F. (2006), “From Data to the Physics Using Ultrametrics: New Results in High Dimensional Data Analysis”, Proceeding of 2nd International Conference on p-Adic Mathematical Physics, Belgrade (Serbia), American Institute of Physics Conference Proceeding, 151–161.

  • MURTAGH, F. (2012a), “Ultrametric Model of Mind, I: Review”, p-Adic Numbers Ultrametric Analysis, and Applications 4(3), 193–206.

    Article  MathSciNet  Google Scholar 

  • MURTAGH, F. (2012b), “Ultrametric Model of Mind, II: Application to Text Content Analysis”, p-Adic Numbers Ultrametric Analysis, and Applications 4(3), 207–221.

    Article  MathSciNet  Google Scholar 

  • RAMMAL, R., ANGLES D’AURIAC, J.C., and DOUCOT, B. (1985), “On the Degree of Ultrametricity”, Journal de Physique Lettres 46, 945–952.

    Article  Google Scholar 

  • RAMMAL, R., TOULOSE, G., and VIRASORO, M.A. (1986), “Ultrametrisity for Physicists”, Reviews of Modern Physics 58(3), 765–788.

    Article  MathSciNet  Google Scholar 

  • SCHIKHOF, W.H. (1984), Ultrametric Calculus. An Introduction to p-adic Analysis, Cambridge Studies in Advanced Mathematics, Cambridge: Cambridge University Press.

  • SHIRYAEV, A.N. (1996), Probability, Graduate Texts in Mathematics (2nd ed.), New York: Springer-Verlag.

  • SLUTSKY, E.E. (1925). “Über Stochastische Asymptoten und Grenzwerte”, Metron 5, 3–89.

    MATH  Google Scholar 

  • VLADIMIROV, V.S., VOLOVICH, I.V., and ZELENOV, E.I. (1994), p-Adic Analysis and Mathematical Physics, Singapore: World Science Publishing.

  • ZUBAREV, A.P. (2014), “On Stochastic Generation of Ultrametrics in High-Dimensional Euclidean Spaces”, p-Adic Numbers Ultrametric Analysis, and Applications 6(2), 155–165.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Zubarev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubarev, A.P. On the Ultrametric Generated by Random Distribution of Points in Euclidean Spaces of Large Dimensions with Correlated Coordinates. J Classif 34, 366–383 (2017). https://doi.org/10.1007/s00357-017-9236-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00357-017-9236-8

Keywords