Skip to main content
Log in

Merging Components in Linear Gaussian Cluster-Weighted Models

  • Original Research
  • Published:
Journal of Classification Aims and scope Submit manuscript

Abstract

Cluster-weighted models (CWMs) are useful tools for identifying latent functional relationships between response variables and covariates. However, owing to excess distributional assumptions made on the covariates, these models can suffer misspecifications of component distributions, which could also undermine the estimation accuracy and render the model structure complicated for interpretation. To address this issue, we consider CWMs with univariate responses and propose a novel CWM by modelling each cluster as a finite mixture to enhance flexibility while retaining parsimony. We prove that the proposed method can provide more meaningful clusters in the data than those of existing methods. Additionally, we present a procedure to construct such a proposed CWM and a feasible expectation-maximization algorithm to estimate the model parameters. Numerical demonstrations, including simulations and real data analysis, are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets analyzed during this study are available from fpc package (Hennig & Imports, 2015) in R at https://CRAN.R-project.org/package=fpc and UCI machine learning repository at https://archive.ics.uci.edu/ml/datasets/abalone.

References

  • Bai, X., Yao, W., & Boyer, J. E. (2012). Robust fitting of mixture regression models. Computational Statistics & Data Analysis, 56(7), 2347–2359.

    Article  MathSciNet  MATH  Google Scholar 

  • Biernacki, C., Celeux, G., & Govaert, G. (2000). Assessing a mixture model for clustering with the integrated completed likelihood. IEEE transactions on pattern analysis and machine intelligence, 22(7), 719–725.

    Article  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine learning, 45(1), 5–32.

    Article  MATH  Google Scholar 

  • Celeux, G., & Govaert, G. (1995). Gaussian parsimonious clustering models. Pattern recognition, 28(5), 781–793.

    Article  Google Scholar 

  • Chamroukhi, F. (2016). Robust mixture of experts modeling using the t distribution. Neural Networks, 79, 20–36.

    Article  MATH  Google Scholar 

  • Cohen, E. (1980). Inharmonic tone perception, Unpublished Ph D Dissertation, Stanford University.

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273–297.

    Article  MATH  Google Scholar 

  • Dang, U. J., Punzo, A., McNicholas, P. D., Ingrassia, S., & Browne, R. P. (2017). Multivariate response and parsimony for Gaussian cluster-weighted models. Journal of Classification, 34(1), 4–34.

    Article  MathSciNet  MATH  Google Scholar 

  • Day, N. E. (1969). Estimating the components of a mixture of normal distributions. Biometrika, 56(3), 463–474.

    Article  MathSciNet  MATH  Google Scholar 

  • Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1–22.

    MathSciNet  MATH  Google Scholar 

  • Dua, D., & Graff, C. (2017). UCI machine learning repository. http://archive.ics.uci.edu/ml.

  • Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences, 55(1), 119–139.

    Article  MathSciNet  MATH  Google Scholar 

  • Friedman, J. (1999). Greedy function approximation: A gradient boosting machine 1 function estimation 2 numerical optimization in function space. North, 1(3), 1–10.

    Google Scholar 

  • Friedman, J., Hastie, T., Tibshirani, R., & et.al (2000). Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors). Annals of statistics, 28(2), 337–407.

    Article  MathSciNet  MATH  Google Scholar 

  • Gallaugher, M. P., Tomarchio, S. D., McNicholas, P. D., & Punzo, A. (2022). Multivariate cluster weighted models using skewed distributions. Advances in Data Analysis and Classification, 16(1), 93–124.

    Article  MathSciNet  MATH  Google Scholar 

  • Gershenfeld, N. (1997). Nonlinear inference and cluster-weighted modeling. Annals of the New York Academy of Sciences, 808(1), 18–24.

    Article  Google Scholar 

  • Gupta, S., & Chintagunta, P. K. (1994). On using demographic variables to determine segment membership in logit mixture models. Journal of Marketing Research, 31(1), 128–136.

    Article  Google Scholar 

  • Hennig, C. (2000). Identifiablity of models for clusterwise linear regression. Journal of Classification, 17(2), 273–296.

    Article  MathSciNet  MATH  Google Scholar 

  • Hennig, C. (2010). Methods for merging Gaussian mixture components. Advances in Data Analysis and Classification, 4(1), 3–34.

    Article  MathSciNet  MATH  Google Scholar 

  • Hennig, C., & Imports, M. (2015). Package ‘fpc’. CRAN.

  • Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1), 193–218.

    Article  MATH  Google Scholar 

  • Ingrassia, S., Minotti, S. C., & Punzo, A. (2014). Model-based clustering via linear cluster-weighted models. Computational Statistics & Data Analysis, 71, 159–182.

    Article  MathSciNet  MATH  Google Scholar 

  • Ingrassia, S., Minotti, S. C., & Vittadini, G. (2012). Local statistical modeling via a cluster-weighted approach with elliptical distributions. Journal of Classification, 29(3), 363–401.

    Article  MathSciNet  MATH  Google Scholar 

  • Ingrassia, S., Punzo, A., Vittadini, G., & Minotti, S. C. (2015). The generalized linear mixed cluster-weighted model. Journal of Classification, 32(2), 327–355.

    Article  MathSciNet  MATH  Google Scholar 

  • Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E. (1991). Adaptive mixtures of local experts. Neural computation, 3(1), 79–87.

    Article  Google Scholar 

  • Jordan, M. I., & Jacobs, R. A. (1994). Hierarchical mixtures of experts and the em algorithm. Neural computation, 6(2), 181–214.

    Article  Google Scholar 

  • Kamakura, W. A., Wedel, M., & Agrawal, J. (1994). Concomitant variable latent class models for conjoint analysis. International Journal of Research in Marketing, 11(5), 451–464.

    Article  Google Scholar 

  • Kim, D., & Seo, B. (2014). Assessment of the number of components in Gaussian mixture models in the presence of multiple local maximizers. Journal of Multivariate Analysis, 125, 100–120.

    Article  MathSciNet  MATH  Google Scholar 

  • LeDell, E., Gill, N., Aiello, S., Fu, A., Candel, A., Click, C., Kraljevic, T., Nykodym, T., Aboyoun, P., Kurka, M., & et.al. (2018). Package ‘h2o’. CRAN.

  • Leisch, F., & Dimitriadou, E. (2009). Package ‘mlbench’. CRAN.

  • MacQueen, J., et al. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth berkeley symposium on mathematical statistics and probability, Oakland, CA, USA, vol. 1, pp. 281-297.

  • Mazza, A., Punzo, A., & Ingrassia, S. (2018). flexcwm: A flexible framework for cluster-weighted models. Journal of Statistical Software, 86(2), 1–30.

    Article  Google Scholar 

  • McLachlan, G. J., & Peel, D. (2004). Finite mixture models, Wiley & Sons.

  • McNicholas, P. D. (2016). Model-based clustering. Journal of Classification, 33(3), 331–373.

    Article  MathSciNet  MATH  Google Scholar 

  • Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., Chang, C. C., Lin, C. C., & Meyer, M. D. (2019). Package ‘e1071’. CRAN.

  • Murphy, K., & Murphy, T. B. (2022). Package ‘MoEClust’. CRAN.

  • Murphy, K., & Murphy, T. B. (2020). Gaussian parsimonious clustering models with covariates and a noise component. Advances in Data Analysis and Classification, 14(2), 293–325.

    Article  MathSciNet  MATH  Google Scholar 

  • Nash, W. J., Sellers, T. L., Talbot, S. R., Cawthorn, A. J., & Ford, W. B. (1994). The population biology of abalone (haliotis species) in tasmania. i. blacklip abalone (h. rubra) from the north coast and islands of bass strait. Sea Fisheries Division. Technical Report, 48, 411.

    Google Scholar 

  • Punzo, A., & McNicholas, P. D. (2017). Robust clustering in regression analysis via the contaminated Gaussian cluster-weighted model. Journal of Classification, 34(2), 249–293.

    Article  MathSciNet  MATH  Google Scholar 

  • Quandt, R. E. (1972). A new approach to estimating switching regressions. Journal of the American statistical association, 67(338), 306–310.

    Article  MATH  Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model. Annals of statistics, 6(2), 461–464.

    Article  MathSciNet  MATH  Google Scholar 

  • Seo, B., & Kim, D. (2012). Root selection in normal mixture models. Computational Statistics & Data Analysis, 56(8), 2454–2470.

    Article  MathSciNet  MATH  Google Scholar 

  • Song, W., Yao, W., & Xing, Y. (2014). Robust mixture regression model fitting by Laplace distribution. Computational Statistics & Data Analysis, 71, 128–137.

    Article  MathSciNet  MATH  Google Scholar 

  • Vinh, N. X., Epps, J., & Bailey, J. (2010). Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance. The Journal of Machine Learning Research, 11, 2837–2854.

    MathSciNet  MATH  Google Scholar 

  • Wolfe, J. H. (1963). Object cluster analysis of social areas, PhD thesis, University of California.

  • Xu, L., Jordan, M., & Hinton, G. E. (1994). An alternative model for mixtures of experts, Advances in neural information processing systems, 7.

  • Yao, W., Wei, Y., & Yu, C. (2014). Robust mixture regression using the t-distribution. Computational Statistics & Data Analysis, 71, 116–127.

    Article  MathSciNet  MATH  Google Scholar 

  • Young, D., Benaglia, T., Chauveau, D., Hunter, D., Elmore, R., Hettmansperger, T., Thomas, H., Xuan, f., & Young, M. D. (2020). Package ‘mixtools’. CRAN.

  • Zarei, S., Mohammadpour, A., Ingrassia, S., & Punzo, A. (2019). On the use of the sub-Gaussian α-stable distribution in the cluster-weighted model. Iranian Journal of Science and Technology, Transactions A: Science, 43(3), 1059–1069.

    Article  MathSciNet  Google Scholar 

  • Zhang, B. (2003). Regression clustering. In Third IEEE international conference on data mining, IEEE, pp. 451–458.

Download references

Funding

The research of Byungtae Seo is supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2022R1A2C1006462).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byungtae Seo.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, S., Seo, B. Merging Components in Linear Gaussian Cluster-Weighted Models. J Classif 40, 25–51 (2023). https://doi.org/10.1007/s00357-022-09424-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00357-022-09424-w

Keywords