Skip to main content
Log in

A Robust Contextual Fuzzy C-Means Clustering Algorithm for Noisy Image Segmentation

  • Original Research
  • Published:
Journal of Classification Aims and scope Submit manuscript

Abstract

In this paper, we address the problem of the fuzzy c-means (FCM) algorithm sensitivity to noise when clustering image pixels. We propose in this regard an improved FCM algorithm that incorporates contextual information at the membership degrees updating stage. For that aim, we introduce two novel parameters: the contextual similarity degree and the intrinsic similarity degree which are used to estimate each pixel’s nature (normal or noisy), according respectively to its context and to its specific features. Based on this estimation, we propose a modified membership degrees updating strategy that proceeds by adaptively reinforcing the assignment of a pixel to its context’s cluster when this pixel is detected as noisy. Experiments performed on synthetic and real-world images proved that our approach achieves competitive performance compared to state-of-the-art FCM-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

The data analyzed during the current study are available from the corresponding author upon request.

Code Availability

The code used in this work will be publicly shared once the paper is accepted for publication.

References

  • Adhikari, S. K., Sing, J. K., Basu, D. K., & Nasipuri, M. (2015). Conditional spatial fuzzy c-means clustering algorithm for segmentation of MRI images. Applied Soft Computing, 34, 758–769.

    Article  Google Scholar 

  • Ahmed, M. N., Yamany, S. M., Mohamed, N., Farag, A. A., & Moriarty, T. (2002). A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Transactions on Medical Imaging, 21(3), 193–199.

    Article  Google Scholar 

  • Alruwaili, M., Siddiqi, M. H., & Javed, M. A. (2020). A robust clustering algorithm using spatial fuzzy c-means for brain MR images. Egyptian Informatics Journal, 21(1), 51–66.

    Article  Google Scholar 

  • Ayech, M. W., El Kalti, K., and El Ayeb, B. (2010) “Image segmentation based on adaptive fuzzy-c-means clustering." In 2010 20th International Conference on Pattern Recognition, 2306–2309. IEEE

  • Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences, 10(2–3), 191–203.

    Article  Google Scholar 

  • Cai, W., Chen, S., & Zhang, D. (2007). Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognition, 40(3), 825–838.

    Article  MATH  Google Scholar 

  • Chang-Chien, S.-J., Nataliani, Y., & Yang, M.-S. (2021). Gaussian-kernel c-means clustering algorithms. Soft Computing, 25(3), 1699–1716.

    Article  MATH  Google Scholar 

  • Chen, S. & Zhang, D. (2004) “Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure." IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34(4), 1907–1916

  • Choudhry, M. S., & Kapoor, R. (2016). Performance analysis of fuzzy c-means clustering methods for MRI image segmentation. Procedia Computer Science, 89, 749–758.

    Article  Google Scholar 

  • Chuang, K.-S., Tzeng, H.-L., Chen, S., Wu, J., & Chen, T.-J. (2006). Fuzzy c-means clustering with spatial information for image segmentation. Computerized Medical Imaging and Graphics, 30(1), 9–15.

    Article  Google Scholar 

  • Despotovic, I., Vansteenkiste, E., & Philips, W. (2013). Spatially coherent fuzzy clustering for accurate and noise-robust image segmentation. IEEE Signal Processing Letters, 20(4), 295–298.

    Article  Google Scholar 

  • Elazab, A., Wang, C., Jia, F., Wu, J., Li, G., & Hu, Q. (2015) “Segmentation of brain tissues from magnetic resonance images using adaptively regularized kernel-based fuzzy-means clustering." Computational and Mathematical Methods in Medicine, 2015

  • Elhedda, W., Mehri, M., & Mahjoub, M. A. (2020). Hyperkernel-based intuitionistic fuzzy c-means for denoising color archival document images. International Journal on Document Analysis and Recognition (IJDAR), 23(3), 161–181.

    Article  Google Scholar 

  • Fan, J.-L., Zhen, W.-Z., & Xie, W.-X. (2003). Suppressed fuzzy c-means clustering algorithm. Pattern Recognition Letters, 24(9–10), 1607–1612.

    Article  MATH  Google Scholar 

  • Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651–666.

    Article  Google Scholar 

  • Kalaiselvi, S., & Gomathi, V. (2020). \(\alpha \)-cut induced fuzzy deep neural network or change detection of SAR images. Applied Soft Computing, 95, 106510.

    Article  Google Scholar 

  • Krinidis, S., & Chatzis, V. (2010). A robust fuzzy local information c-means clustering algorithm. IEEE Transactions on Image Processing, 19(5), 1328–1337.

    Article  MathSciNet  MATH  Google Scholar 

  • Lei, T., Jia, X., Zhang, Y., He, L., Meng, H., & Nandi, A. K. (2018) “Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering." ’IEEE Transactions on Fuzzy Systems, 26(5), 3027–3041

  • Li, M., & Li, Y.-S. (2006) “Fuzzy-c-means clustering based on the gray and spatial feature for image segmentation." In 2006 International Conference on Computational Intelligence and Security, 2, 1641–1646. IEEE

  • Liew, A., Leung, S., & Lau, W. (2000). Fuzzy image clustering incorporating spatial continuity. IEE Proceedings-Vision, Image and Signal Processing, 147(2), 185–192.

    Article  Google Scholar 

  • Liew, A.-C., Leung, S. H., & Lau, W. H. (2003). Segmentation of color lip images by spatial fuzzy clustering. IEEE transactions on Fuzzy Systems, 11(4), 542–549.

    Article  Google Scholar 

  • Mohamed, N. A., Ahmed, M., & Farag, A. (1998) “Modified fuzzy c-mean in medical image segmentation." In Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol. 20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No. 98CH36286), 3, 1377–1380. IEEE

  • Shamsi, H., & Seyedarabi, H. (2012). A modified fuzzy c-means clustering with spatial information for image segmentation. International Journal of Computer Theory and Engineering, 4(5), 762.

    Article  Google Scholar 

  • Szilagyi, L., Benyo, Z., Szilágyi, S. M., & Adam, H. (2003) “MR brain image segmentation using an enhanced fuzzy c-means algorithm." In Proceedings of the 25th annual international conference of the IEEE engineering in medicine and biology society (IEEE Cat. No. 03CH37439), 1, 724–726. IEEE

  • Tian, J. W., Yu, Y. L., & Shen, T. (2012) “FCM clustering segmentation algorithms based on spatial constraint." In Advanced Materials Research, 411, 497–500. Trans Tech Publ

  • Tolias, Y. A., & Panas, S. M. (1998). On applying spatial constraints in fuzzy image clustering using a fuzzy rule-based system. IEEE Signal Processing Letters, 5(10), 245–247.

    Article  Google Scholar 

  • Wang, C., Pedrycz, W., Li, Z., & Zhou, M. (2020). Residual-driven fuzzy c-means clustering for image segmentation. IEEE/CAA Journal of Automatica Sinica, 8(4), 876–889.

    Article  MathSciNet  Google Scholar 

  • Wang, C., Pedrycz, W., Zhou, M., & Li, Z. (2020). Sparse regularization-based fuzzy c-means clustering incorporating morphological grayscale reconstruction and wavelet frames. IEEE Transactions on Fuzzy Systems, 29(7), 1826–1840.

    Article  Google Scholar 

  • Wang, Q., Wang, X., Fang, C., & Jiao, J. (2021). Fuzzy image clustering incorporating local and region-level information with median memberships. Applied Soft Computing, 105, 107245.

    Article  Google Scholar 

  • Wang, Q., Wang, X., Fang, C., & Yang, W. (2020). Robust fuzzy c-means clustering algorithm with adaptive spatial & intensity constraint and membership linking for noise image segmentation. Applied Soft Computing, 92, 106318.

    Article  Google Scholar 

  • Wang, Z., Song, Q., Soh, Y. C., & Sim, K. (2013). An adaptive spatial information-theoretic fuzzy clustering algorithm for image segmentation. Computer Vision and Image Understanding, 117(10), 1412–1420.

    Article  Google Scholar 

  • Yang, M.-S., & Tsai, H.-S. (2008). A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction. Pattern Recognition Letters, 29(12), 1713–1725.

    Article  Google Scholar 

  • Yang, X., Zhang, G., Lu, J., & Ma, J. (2010). A kernel fuzzy c-means clustering-based fuzzy support vector machine algorithm for classification problems with outliers or noises. IEEE Transactions on Fuzzy Systems, 19, 105–115.

    Article  Google Scholar 

  • Zhang, X., Pan, W., Wu, Z., Chen, J., Mao, Y., & Wu, R. (2020). Robust image segmentation using fuzzy c-means clustering with spatial information based on total generalized variation. IEEE Access, 8, 95681–95697.

    Article  Google Scholar 

  • Zhao, F., Jiao, L., & Liu, H. (2013). Kernel generalized fuzzy c-means clustering with spatial information for image segmentation. Digital Signal Processing, 23(1), 184–199.

    Article  MathSciNet  Google Scholar 

  • Zhao, F., Liu, F., Li, C., Liu, H., Lan, R., & Fan, J. (2021). Coarse-fine surrogate model driven multiobjective evolutionary fuzzy clustering algorithm with dual memberships for noisy image segmentation. Applied Soft Computing, 112, 107778.

    Article  Google Scholar 

  • Zhao, F., Liu, H., & Fan, J. (2015). A multiobjective spatial fuzzy clustering algorithm for image segmentation. Applied Soft Computing, 30, 48–57.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the editor, the associate editor, and the referees for their constructive comments that helped to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Kalti.

Ethics declarations

Ethical Approval

The paper has been prepared in compliance with ethical standards.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalti, K., Touil, A. A Robust Contextual Fuzzy C-Means Clustering Algorithm for Noisy Image Segmentation. J Classif 40, 488–512 (2023). https://doi.org/10.1007/s00357-023-09443-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00357-023-09443-1

Keywords

Navigation