Skip to main content
Log in

The problem of verification with reference to the Girkmann problem

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This paper is concerned with the problem of verification of the numerical accuracy of computed information with particular reference to a model problem in solid mechanics. The basic concepts and procedures are outlined and illustrated by examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. StressCheck is a trademark of Engineering Software Research and Development, Inc., St. Louis, Missouri, USA.

References

  1. AIAA Editorial Policy Statement on Numerical Accuracy and Experimental Uncertainty (1994) AIAA J 32(1):3

    Google Scholar 

  2. ASME V&V 10-2006 (2006) Guide for verification and validation in computational solid mechanics. The American Society of Mechanical Engineers. ISBN No. 0-7918-3042-X

  3. Szabó B, Actis RL (2009) On the role of hierarchic spaces and models in verification and validation. Comput Methods Appl Mech Eng 198:1273–1280

    Article  MATH  Google Scholar 

  4. Pitkäranta J, Babuška I, Szabó B (2008) The Girkmann problem. IACM Expr 22:28

    Google Scholar 

  5. Pitkäranta J, Babuška I, Szabó B (2009) The Problem of Verification with Reference to the Girkmann Problem. IACM Expr 24:14–15

    Google Scholar 

  6. Girkmann K (1956) Flächentragwerke, 4th edn. Springer, Wien

    Google Scholar 

  7. Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells, 2nd edn. McGraw-Hill, New York

  8. Timoshenko S, Goodier JN (1951) Theory of elasticity, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  9. Naghdi PM (1963) Foundations of elastic shell theory. In: Seddon IN, Hill R (eds) Progress in solid mechanics, vol 4. North-Holland, Amsterdam

  10. Novozhilov VV (1964) Thin shell theory. P. Noordhoff Ltd, Groningen

    Google Scholar 

  11. Pitkäranta J The dome and the ring. Manuscript

  12. Destuynder PA (1985) Classification of thin shell theories. Acta Appl Math 4:15–417

    Article  MATH  MathSciNet  Google Scholar 

  13. Ciarlet PG (1990) Plates and junctions in elastic multi-structures: an asymptotic analysis. RMA, vol 14. Masson, Paris

  14. Szabó B, Babuška I (1991) Finite element analysis. Wiley, New York

    MATH  Google Scholar 

  15. Szabó B, Düster A, Rank E (2004) The p-version of the finite element method. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, Chap, 5, vol 1. Wiley, Chichester

  16. Chen Q, Babuška I (1995) Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle. Comput Methods Appl Mech Eng 128:405–417

    Article  MATH  Google Scholar 

  17. Ainsworth M, Oden JT (2000) A posteriori error estimation in finite element analysis. Wiley, New York

  18. Babuška I, Strouboulis T (2001) The finite element method and its reliability. Oxford University Press, Oxford

    Google Scholar 

  19. Babuška I, Miller A (1984) The post-processing approach in the finite element method—part 1: calculation of displacements, stresses and other higher derivatives of the displacements. Int J Numer Methods Eng 20:1085–1109

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barna A. Szabó.

Appendix: Proof of inequality (25)

Appendix: Proof of inequality (25)

The function \({\mathbf w}^{({\mathbf M})}\) was defined on ΩS and is extended by zero over Ω. Therefore, \({\mathbf w}^{({\mathbf M})}\) is discontinuous on Γα and it does not lie in E(Ω). In other words, \(\Vert {{\mathbf{w}}}^{({{\mathbf{M}}})}\Vert_{E(\Upomega)}\) has no meaning. On the other hand \(\Vert {{\mathbf{w}}}^{({{\mathbf{M}}})}\Vert_{E(\Upomega_{\rm S})}\) is well defined. We define an auxiliary function \({\mathbf z}_{{\mathbf{EX}}}^{({\mathbf M})}\in E(\Upomega)\) as follows:

$$ B_\Upomega({{\mathbf{z}}}_{{{\mathbf{EX}}}}^{({{\mathbf{M}}})}, {{\mathbf{v}}})=B_{\Upomega_{\rm S}}({{\mathbf{w}}}^{({{\mathbf{M}}})}, {{\mathbf{v}}})\quad \hbox{for\;all}\; {{\mathbf{v}}}\in E(\Upomega) $$
(44)

where \(B_{\Upomega_{\rm S}}({{\mathbf{w}}}^{({{\mathbf{M}}})},{{\mathbf{v}}})\) is a bounded functional on E(Ω). This guarantees that the function \({\mathbf{z}}_{{\mathbf{EX}}}^{({\mathbf{M}})}\,{\in}\,E(\Upomega)\) exists. The function \({\mathbf z}_{{\mathbf{EX}}}^{({\mathbf M})}\) is uniquely determined up to rigid body displacement in the axial direction. It is continuous and smooth on Ω. By selecting v = u EX  − u FE , Eq. (23) can be written as:

$$ M_\alpha^{({\rm EX})} - M_\alpha^{({\rm FE})}={\frac{1}{R_{\rm c}}} B_{\Upomega}( {{\mathbf{u}}}_{{{\mathbf{EX}}}}-{{\mathbf{u}}}_{{{\mathbf{FE}}}}, {{\mathbf{z}}}_{{{\mathbf{EX}}}}^{({{\mathbf{M}}})}). $$
(45)

Next we define \({\mathbf z}_{{\mathbf FE}}^{({\mathbf M})}\,{\in}\,S(\Upomega)\) as follows:

$$ B_\Upomega({{\mathbf{z}}}_{{{\mathbf{FE}}}}^{({{\mathbf{M}}})},{{\mathbf{v}}}) = B_\Upomega({{\mathbf{z}}}_{{{\mathbf{EX}}}}^{({{\mathbf{M}}})},{{\mathbf{v}}}) \quad \hbox{for\;all}\; {{\mathbf{v}}}\in S(\Upomega). $$
(46)

The function \({\mathbf z}_{{\mathbf{FE}}}^{({\mathbf M})}\) is the projection of \({\mathbf z}_{{\mathbf{EX}}}^{({\mathbf M})}\) onto the finite element space S(Ω). By the Galerkin orthogonality:

$$ B_\Upomega({{\mathbf{u}}}_{{{\mathbf{EX}}}}-{{\mathbf{u}}}_{{{\mathbf{FE}}}}, {{\mathbf{v}}}) = 0 \quad \hbox{for\;all}\; {{\mathbf{v}}}\in S(\Upomega) $$
(47)

therefore we can select \({\mathbf v}={\mathbf z}_{{\mathbf FE}}^{({\mathbf M})}\) and divide by R c to obtain:

$$ {\frac{1}{R_{\rm c}}}B_\Upomega({{\mathbf{u}}}_{{{\mathbf{EX}}}}- {{\mathbf{u}}}_{{{\mathbf{FE}}}}, {{\mathbf{z}}}_{{{\mathbf{FE}}}}^{({{\mathbf{M}}})}) = 0. $$
(48)

Upon subtracting Eq. (47) from Eq. (45), we have:

$$ M_\alpha^{({\rm EX})} - M_\alpha^{({\rm FE})}={\frac{1}{R_{\rm c}}} B_{\Upomega}( {{\mathbf{u}}}_{{{\mathbf{EX}}}}-{{\mathbf{u}}}_{{{\mathbf{FE}}}}, {{\mathbf{z}}}_{{{\mathbf{EX}}}}^{({{\mathbf{M}}})}-{{\mathbf{z}}}_{{{\mathbf{FE}}}} ^{({{\mathbf{M}}})}) $$
(49)

and Eq. (25) follows from the Schwarz inequality.

Remark 8

Owing to the regularity of \({\mathbf z}_{{\mathbf{EX}}}^{({\mathbf M})}\) on Ω the rate of convergence of \({\mathbf z}_{{\mathbf FE}}^{({\mathbf M})}\) is likely to be comparable to the rate of convergence of u FE . Therefore, the error in M (FE)α will be roughly proportional to the square of the error in energy norm, which is the same as the error in strain energy. Note that we have been concerned with an upper estimate of the error in M (FE)α . Under various circumstances the actual error may be much smaller than the upper estimate. Generally speaking, the extraction method is very robust as illustrated by the numerical results presented in this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szabó, B.A., Babuška, I., Pitkäranta, J. et al. The problem of verification with reference to the Girkmann problem. Engineering with Computers 26, 171–183 (2010). https://doi.org/10.1007/s00366-009-0155-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-009-0155-0

Keywords

Navigation