Skip to main content
Log in

Moving curved mesh adaptation for higher-order finite element simulations

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Higher-order finite element method requires valid curved meshes in three-dimensional domains to achieve the solution accuracy. When applying adaptive higher-order finite elements in large-scale simulations, complexities that arise include moving the curved mesh adaptation along with the critical domains to achieve computational efficiency. This paper presents a procedure that combines Bézier mesh curving and size-driven mesh adaptation technologies to address those requirements. A moving mesh size field drives a curved mesh modification procedure to generate valid curved meshes that have been successfully analyzed by SLAC National Accelerator Laboratory researchers to simulate the short-range wakefields in particle accelerators. The analysis results for a 8-cavity cryomodule wakefield demonstrate that valid curvilinear meshes not only make the time-domain simulations more reliable, but also improve the computational efficiency up to 30%. The application of moving curved mesh adaptation to an accelerator cavity coupler shows a tenfold reduction in execution time and memory usage without loss in accuracy as compared to uniformly refined meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Babuska I, Szabo BA, Katz IN (1981) The p-version of the finite element method. Int J Numer Meth Eng 18(3):515–545

    MathSciNet  MATH  Google Scholar 

  2. Luo XJ, Shephard MS, Remacle JF, O’Bara RM, Beall MW, Szabo BA, Actis R (2002) p-version mesh generation issues. In: Proceedings of eleventh meshing roundtable, Sandia National Labs, Ithaca, NY, pp 343–354

  3. Simmetrix Inc. Enabling simulation-based design. http://www.simmetrix.com

  4. CUBIT geometry and mesh generation toolkit (2008). http://cubit.sandia.gov

  5. Akcelik V, Ko K, Lee LQ, Li ZH, Ng CK, Xiao LL (2008) Shape determination for deformed electromagnetic cavities. J Comput Phys 227(3):1722–1738

    Article  MathSciNet  MATH  Google Scholar 

  6. Xiao L, Adolphsen C, Akcelik V, Kabel A, Ko K, Lee LQ, Li Z, Ng CK (2007) Modeling imperfection effects on dipole modes in TESLA cavity. In: Proceedings of 2007 particle accelerator conference, Albuquerque, NM

  7. Lee LQ, Akcelik V, Chen S, G LX, Prudencio E, Schussman G, Uplenchwar R, Ng C, Ko K, Luo XJ, Shephard MS (2007) Enabling technologies for petascale electromagnetic accelerator simulation. J Phys Conf Ser 78:012040

    Article  Google Scholar 

  8. Luo XJ, Shephard MS, Obara RM, Nastasia R, Beall MW (2004) Automatic p-version mesh generation for curved domains. Eng Comput 20:265–285

    Article  Google Scholar 

  9. Luo XJ (2005) An automatic adaptive directional variable p-version method in 3D curved domains. PhD thesis, Rensselaer Polytechnic Institute, New York

  10. Li XR, Shephard MS, Beall MW (2003) Accounting for curved domains in mesh adaptation. Int J Numer Meth Eng 150:247–276

    Article  Google Scholar 

  11. Li XR, Shephard MS, Beall MW (2005) 3D anisotropic mesh adaptation by mesh modification. Comp Meth Appl Mech Eng 194:4915–4950

    Article  MathSciNet  MATH  Google Scholar 

  12. Seegyoung E, Shephard MS (2006) Efficient distributed mesh data structure for parallel automated adaptive analysis. Eng Comput 22:197–213

    Article  Google Scholar 

  13. Beall MW, Shephard MS (1997) A general topology-based mesh data structure. Int J Numer Meth Eng 40(9):1573–1596

    Article  MathSciNet  Google Scholar 

  14. Farin G (1992) Curves and surfaces for computer aided geometric design. Academic Press, New York

  15. Sahni O, Muller J, Jansen KE, Shephard MS, Taylor CA (2006) Efficient anisotropic adaptive discretization of the cardiovascular system. Comput Methods Appl Mech Eng 195(41–43):5634–5655

    Article  MathSciNet  MATH  Google Scholar 

  16. Wan J (2006) An automated adaptive procedure for 3D metal forming simulations. PhD thesis, Rensselaer Polytechnic Institute, New York

  17. Chevaugeon N, Hillewaert K, Gallez X, Ploumhans P, Remacle JF (2007) Optimal numerical parameterization of discontinuous Galerkin method applied to wave propagation problems. J Comput Phys 223(1):188–207

    Article  MathSciNet  MATH  Google Scholar 

  18. Borouchaki H, Hecht F, Frey PJ (1998) Mesh gradation control. Int J Numer Meth Eng 43(6):1143–1165

    Article  MathSciNet  MATH  Google Scholar 

  19. Sun DK, Lee JF, Cendes Z (2001) Construction of nearly orthogonal Nedelec bases for rapid convergence with multilevel preconditioned solvers. SIAM J Sci Comput 23(4):1053–1076

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by US Department of Energy under DOE Grant number DE-FC02-06ER25769 and DE-AC02-76SF00515.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Shephard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, XJ., Shephard, M.S., Lee, LQ. et al. Moving curved mesh adaptation for higher-order finite element simulations. Engineering with Computers 27, 41–50 (2011). https://doi.org/10.1007/s00366-010-0179-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-010-0179-5

Keywords

Navigation