Skip to main content
Log in

The simulation of sheet metal forming processes via integrating solid-shell element with explicit finite element method

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Solid-shell elements can be seen as a class of typical double-surfaced shell elements with no rational degrees of freedom, which are more suitable for analyzing double-sided contact problems than conventional shell elements. In this study, a solid-shell finite element model is implemented into the explicit finite element software ABAQUS/Explicit as a user-defined element, through which the sheet metal forming processes are simulated. The main feature of this finite element model is that the solid-shell element formulation is embedded into an explicit finite element procedure, compared to the previous studies on the solid-shell elements under the implicit finite element framework. To obtain a straightforward element, a complete integration scheme is adopted. No loss of generality, a twelve-parameter enhance assumed strain method is employed to improve the element’s behavior. Two benchmarks from the NUMISHEET conference and a U-channel roll-forming process are simulated with this explicit solid-shell finite element model. The calculated results are comparable with experimental and numerical results presented in the literatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wriggers P, Eberlein R, Reese S (1996) A comparison of three-dimensional continuum and shell elements for finite plasticity. Int J Solids Struct 33:3309–3326

    Article  MATH  Google Scholar 

  2. Alves de Sousa RJ, Yoon JW, Valente RAF, Gracio JJ (2007) On the use of a reduced enhanced solid-shell (RESS) element for sheet forming simulations. Int J Plast 23:490–515

    Article  MATH  Google Scholar 

  3. Flanagan DP, Belytschko T (1981) A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. Int J Numer Meth Eng 17:679–706

    Article  MATH  Google Scholar 

  4. Hauptmann R, Schweizerhof K (1998) A systematic development of solid-shell element formulations for linear and non-linear analyses employing only displacement degrees of freedom. Int J Numer Meth Eng 42:49–69

    Article  MATH  Google Scholar 

  5. Hauptmann R, Schweizerhof K, Doll S (2000) Extension of the ‘solid-shell’ concept for application to large elastic and large elastoplastic deformations. Int J Numer Meth Eng 49:1121–1141

    Article  MATH  Google Scholar 

  6. Hauptmann R, Doll S, Harnau M, Schweizerhof K (2001) ‘Solid-shell’ elements with linear and quadratic shape functions at large deformations with nearly incompressible materials. Comput Struct 79:1671–1685

    Article  Google Scholar 

  7. Klinkel S, Wagner W (1997) A geometrical non-linear brick element based on the EAS-method. Int J Numer Meth Eng 40:4529–4545

    Article  MATH  Google Scholar 

  8. Klinkel S, Gruttmann F, Wagner W (1999) A continuum based three-dimensional shell element for laminated structures. Comput Struct 71:43–62

    Article  Google Scholar 

  9. Klinkel S, Gruttmann F, Wagner W (2006) A robust non-linear solid shell element based on a mixed variational formulation. Comput Meth Appl Mech Eng 195:179–201

    Article  MATH  Google Scholar 

  10. Alves de Sousa RJ, Jorge RMN, Valente RAF, Ce´sar de Sá JMA (2003) A new volumetric and shear locking-free 3D enhanced strain element. Eng Comput 20:896–925

    Article  MATH  Google Scholar 

  11. Alves de Sousa RJ, Cardoso RPR, Valente RAF, Yoon JW, Grácio JJ, Jorge RMN (2005) A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness. Part I. Geometrically linear applications. Int J Numer Meth Eng 62:952–977

    Article  MATH  Google Scholar 

  12. Alves de Sousa RJ, Cardoso RPR, Valente RAF, Yoon JW, Grácio JJ, Jorge RMN (2006) A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness. Part II. Nonlinear applications. Int J Numer Meth Eng 67:160–188

    Article  MATH  Google Scholar 

  13. Valente RAF, Alves de Sousa RJ, Jorge RMN (2004) An enhanced strain 3D element for large deformation elastoplastic thin-shell applications. Comput Mech 34:38–54

    Article  MATH  Google Scholar 

  14. Valente RAF (2004) Developments on shell and solid-shell finite elements technology in nonlinear continuum mechanics. Ph.D. dissertation. University of Porto (FEUP), Portugal

  15. Harnau M, Konyukhov A, Schweizerhof K (2005) Algorithmic aspects in large deformation contact analysis using ‘Solid-Shell’ elements. Comput Struct 83:1804–1823

    Article  Google Scholar 

  16. Reese S, Schwarze M (2005) New finite-element-technology for simulation of electromagnetic sheet forming. ZWF Zeitschrift fur Wirtschaftlichen Fabrikbetrieb 100:439–442

    Google Scholar 

  17. Parente MPL, Valente RAF, Jorge RMN, Cardoso RPR, Alves de Sousa RJ (2006) Sheet metal forming simulation using EAS solid-shell finite elements. Finite Elem Anal Des 42:1137–1149

    Article  Google Scholar 

  18. Harnau M, Schweizerhof K (2006) Artificial kinematics and simple stabilization of solid-shell elements occurring in highly constrained situations and applications in composite sheet forming simulation. Finite Elem Anal Des 42:1097–1111

    Article  Google Scholar 

  19. Cardoso RPR, Yoon JW, Mahardika M, Choudhry S, Alves de Sousa RJ, Valente RAF (2008) Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one-point quadrature solid-shell elements. Int J Numer Meth Eng 75:156–187

    Article  MATH  Google Scholar 

  20. Nakamachi E, Makinouchi A (1992) Description of tool geometry and formulation of deformation dependant contact problem. VDI conference on FE-simulation of 3-D sheet metal forming processes in automotive industry, Zürich, Switzerland, pp 75–107

  21. Wagoner RH, Zhou D (1992) Analyzing sheet forming operations-recent numerical and experimental advances, In: Chenot J-L, Wood RD, Zienkiewicz OC, Balkemma AA (eds) Numerical methods in industrial forming processes, Rotterdam, pp 123–132

  22. ABAQUS (2007) Analysis user’s manual, version 6.7, ABAQUS, Inc, USA

  23. Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595–1638

    Article  MathSciNet  MATH  Google Scholar 

  24. Simo JC, Hughes TJR (1986) On the variational foundations of assumed strain methods. J Appl Mech Trans ASME 53:51–54

    Article  MathSciNet  MATH  Google Scholar 

  25. Simo JC, Armero F, Taylor RL (1993) Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems. Comput Methods Appl Mech Eng 110:359–386

    Article  MathSciNet  MATH  Google Scholar 

  26. Yoon JW, Yang DY, Chung K (1999) Elasto-plastic finite element method based on incremental deformation theory and continuum based shell elements for planar anisotropic sheet materials. Comput Methods Appl Mech Eng 174:23–56

    Article  MATH  Google Scholar 

  27. NUMISHEET (1996) In: Lee JK, Kinzel GL, Wagoner RH (eds) Proceedings of the 3rd international conference on numerical simulation of sheet metal forming processes—verification of simulations with experiments, Dearborn, Michigan

  28. NUMISHEET (2002) In: Yang DY, Oh SI, Huh H, Kim YH (eds) Proceedings of the 5th international conference and workshop on numerical simulation of 3D sheet forming processes—verification of simulation with experiments, Jeju Island

  29. Lee SW, Yang DY (1998) An assessment of numerical parameters influencing springback in explicit finite element analysis of sheet metal forming process. J Mater Proc Tech 80–81:60–67

    Article  Google Scholar 

  30. Damm K (1989) Determination of longitudinal strains in roll forming of standard sections in a multi-stand machine, Dissertation. Institute for Production Technology, University of Darmstadt, Germany

  31. Heislitz F, Livatyali H, Ahmetoglu MA, Kinzel GL, Altan T (1996) Simulation of roll forming process with the 3-D FEM code PAM-STAMP. J Mater Proc Tech 59:59–67

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of National Natural Science Foundation of China (Nos.50634010, 50821003), Shanghai Science & Technology Projects (No. 09JC1407000), and Program for New Century Excellent Talents in University (NCET-07-0545). The authors also appreciate the supported of the Programme of Introducing Talents of Discipline to Universities (No. B06012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Y. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L.M., Li, D.Y. & Peng, Y.H. The simulation of sheet metal forming processes via integrating solid-shell element with explicit finite element method. Engineering with Computers 27, 273–284 (2011). https://doi.org/10.1007/s00366-010-0197-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-010-0197-3

Keywords

Navigation