Skip to main content
Log in

Fatigue-life estimation of functionally graded materials using XFEM

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The present work deals with the fatigue crack growth simulation of alloy/ceramic functionally graded materials (FGMs) using extended finite element method (XFEM). Various cases of FGM containing multiple inhomogeneities/discontinuities along with either a major edge or a center crack are taken for the purpose of simulation. The fatigue life of the FGM plate is calculated using Paris law of fatigue crack growth under cyclic loading. The effect of multiple inhomogeneities/discontinuities (minor cracks, holes/voids, and inclusions) on the fatigue life of cracked FGM plate is studied in detail. These simulations show that the presence of inhomogeneities/discontinuities in the domain significantly influences the fatigue life of the components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Bahr H-A, Balke H, Fett T, Hofinger I, Kirchoff G, Munz D, Neubrand A, Semenov AS, Weiss H-J, Yang YY (2003) Cracks in functionally graded materials. Mater Sci Eng A362:2–16

    Article  Google Scholar 

  2. Bordas S, Nguyen P, Dunant C, Guidoum A, Dang H (2007) An extended finite element library. Int J Numer Methods Eng 71:703–732

    Article  MATH  Google Scholar 

  3. Carpinteri A, Paggi M, Pugno N (2006) An analytical approach for fracture and fatigue in functionally graded materials. Int J Fract 141:535–547

    Article  MATH  Google Scholar 

  4. Carpinteri A, Pugno N (2006) Cracks and re-entrant corners in functionally graded materials. Eng Fract Mech 73:1279–1291

    Article  Google Scholar 

  5. Chakraborty A, Rahman S (2008) Stochastic multiscale models for fracture analysis of functionally graded materials. Eng Fract Mech 75:2062–2086

    Article  Google Scholar 

  6. Comi C, Mariani S (2007) Extended finite element simulation of quasi-brittle fracture in functionally graded materials. Comput Methods Appl Mech Eng 196:4013–4026

    Article  MATH  Google Scholar 

  7. Dag S, Yildirim B, Sarikaya D (2007) Mixed-mode fracture analysis of orthotropic functionally graded materials under mechanical and thermal loads. Int J Solids Struct 44:7816–7840

    Article  MATH  Google Scholar 

  8. Dolbow JE, Gosz M (2002) On the computation of mixed-mode stress intensity factors in functionally graded materials. Int J Solids Struct 39:2557–2574

    Article  MATH  Google Scholar 

  9. Guo L-C, Nado N (2007) Modelling method for a crack problem of functionally graded materials with arbitrary properties-piecewise exponential model. Int J Solids Struct 44:6768–6790

    Article  MATH  Google Scholar 

  10. Guo L-C, Nado N (2008) Fracture mechanics analysis of functionally graded layered structures with a crack crossing the interface. Mech Mater 40:81–99

    Article  Google Scholar 

  11. Huang GY, Wang YS, Dietmar G (2003) Fracture analysis of functionally graded coatings: plane deformation. Eur J Mech vol A/Solids 22:535–544

    Article  MATH  Google Scholar 

  12. Huang GY, Wang YS, Yu SW (2005) A new model for fracture analysis of functionally graded coatings under plane deformation. Mech Mater 37:507–516

    Article  Google Scholar 

  13. Jin Z-H, Batra RC (1996) Some basic fracture mechanics concepts in functionally graded materials. J Mech Phys Solids 44:1221–1235

    Article  Google Scholar 

  14. Kim JH, Paulino GH (2002) Finite element evaluation of mixed mode stress intensity factors in functionally graded materials. Int J Numer Methods Eng 53:1903–1935

    Article  MATH  Google Scholar 

  15. Lee S, Song J, Yoon Y, Zi G, Belytschko T (2009) Combined extended and superimposed finite element method for cracks. Int J Numer Methods Eng 59:1119–1136

    Article  Google Scholar 

  16. Moes N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150

    Article  MATH  Google Scholar 

  17. Mohammadi S (2008) Extended finite element method for fracture analysis of structures. Blackwell, Oxford

    Book  MATH  Google Scholar 

  18. Prabhakar RM, Tippur HV (2000) Numerical analysis of crack-tip fields in functionally graded materials with a crack normal to the elastic gradient. Int J Solids Struct 37:5353–5370

    Article  MATH  Google Scholar 

  19. Rao BN, Rahman S (2003) An interaction integral method for analysis of cracks in orthotropic functionally graded materials. Comput Mech 32:40–51

    Article  MATH  Google Scholar 

  20. Rao BN, Rahman S (2005) A continuum shape sensitivity method for fracture analysis of orthotropic functionally graded materials. Mech Mater 37:1007–1025

    Article  Google Scholar 

  21. Rao BN, Rahman S (2006) A continuum shape sensitivity method for fracture analysis of isotropic functionally graded materials. Comput Mech 38:133–150

    Article  MATH  Google Scholar 

  22. Sukumar N, Chopp D, Moes N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite element method. Comput Methods Appl Mech Eng 190:6183–6200

    Article  MathSciNet  MATH  Google Scholar 

  23. Ventura G, Budyn N, Belytschko T (2003) Vector level sets for description of propagating cracks in finite elements. Int J Numer Meth Eng 58:1571–1592

    Article  MATH  Google Scholar 

  24. Zhang Ch, Sladek J, Sladek V (2004) Crack analysis in unidirectional and bidirectional functionally graded materials. Int J Fract 129:385–406

    Article  MATH  Google Scholar 

  25. Zhang Ch, Sladek J, Sladek V (2005) Antiplane crack analysis of a functionally graded material by a BIEM. Comput Mater Sci 32:611–619

    Article  Google Scholar 

  26. Zhang L, Kim JH (2009) A complex variable approach for asymptotic mode-III crack-tip fields in an anisotropic functionally graded material. Eng Fract Mech 76:2512–2525

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, S., Singh, I.V. & Mishra, B.K. Fatigue-life estimation of functionally graded materials using XFEM. Engineering with Computers 29, 427–448 (2013). https://doi.org/10.1007/s00366-012-0261-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-012-0261-2

Keywords

Navigation