Skip to main content
Log in

Generic components for petascale adaptive unstructured mesh-based simulations

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In the traditional programming paradigm, data structures and algorithms are developed for specific data types and requirements. This leads to code redundancy and inflexibility, thus not allowing effective code reuse for similar applications. One effective approach to increase code reuse is generic programming, which focuses on the development of efficient, reusable software libraries through suitable abstractions for the common requirements. In this paper, we present how we applied generic programming to an ongoing effort for mesh-based adaptive simulations on massively parallel computers. Three generic components, iterator, set and tag, were developed using design pattern, C++ template programming and the standard template library. The scaling studies on petascale supercomputers demonstrate the efficiency of the reusable, generic components which do not sacrifice the performance of the previous tools developed in the traditional object-oriented programming paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Algorithm 1
Algorithm 2
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. In this paper, entity dimension and entity type are interchangeable terms.

  2. The notation [first, last) refers to all the iterators from first up to, but not including, last [35].

Abbreviations

V :

The model, \(V\,\in\,\{ G, \,P, \,M \}\) where G signifies the geometric model, P signifies the partition model, and M signifies the mesh model

V d i :

The ith entity of dimension d in model V. d = 0 for a vertex, d = 1 for an edge, d = 2 for a face, and d = 3 for a region

P i :

The ith part in a distributed mesh

References

  1. Austern MH (1999) Generic programming and the STL: using and extending the C++ standard template library, 1 edn. Addison-Wesley, Reading

    Google Scholar 

  2. Alexandrescu A (2001) Modern C++ design: generic programming and design patterns applied, 1st edn. Addison-Wesley, Reading

    Google Scholar 

  3. Musser DR, Derge GJ, Saini A (2001) STL tutorial and reference guide: C++ programming with the standard template library, 2nd edn. Addison-Wesley, Boston

    Google Scholar 

  4. Stroustrup B (1997) The C++ programming language, 3rd edn. Addison-Wesley, Reading

    Google Scholar 

  5. Siek JG, Lumsdaine A (1999) The matrix template library: generic components for high-performance scientific computing. Comput Sci Eng 1(6):70–71

    Article  Google Scholar 

  6. Lee L-Q, Lumsdaine A (2003) The generic message passing framework. In: Proceedings of the 2003 international parallel distributed processing symposium, Apr 2003

  7. Berti G (2001) A generic toolbox for the grid craftsman. In: Proceedings of the 17th GAMM seminar construction of grid generation algorithms. http://www.mis.mpg.de/conferences/gamm/2001

  8. Berti G (2006) GrAL-the grid algorithms library. Fut Gener Comput Syst 22(1–2):110–122

    Article  Google Scholar 

  9. Fabri A, Giezeman G-J, Kettner L, Schirra S, Schönherr S (2000) On the design of CGAL a computational geometry algorithms library. Softw Pract Exper 30(11):1167–1202

    Article  MATH  Google Scholar 

  10. Bastian P, Blatt M, Dedner A, Engwer C, Klöfkorn R, Ohlberger M, Sander O (2008) A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework. Computing 82(2):103–119

    Article  MATH  MathSciNet  Google Scholar 

  11. Bastian P, Blatt M, Dedner A, Engwer C, Klöfkorn R, Kornhuber R, Ohlberger M, Sander O (2008) A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE. Computing 82(2):121–138

    Article  MATH  MathSciNet  Google Scholar 

  12. Cirak F, Cummings JC (2008) Generic programming techniques for parallelizing and extending procedural finite element programs. Eng Comput 24(1):1–16

    Article  Google Scholar 

  13. Beall MW, Shephard MS (1999) An object-oriented framework for reliable numerical simulations. Eng Comput 15:61–72

    Article  Google Scholar 

  14. Shephard MS, Beall MW, O’Bara RM, Webster BE (2004) Toward simulation-based design. Finite Elem Anal Des 40(12):1575–1598

    Article  Google Scholar 

  15. Simmetrix Inc. (2012) The simulation modeling suite (Online). http://www.simmetrix.com/. Accessed 5 April 2012

  16. Department of Energy’s Scientific Discovery through Advanced Computing (SciDAC) (2010) Interoperable Technologies for Advanced Petascale Simulations (ITAPS) (Online). http://www.itaps.org/. Accessed 5 April 2012

  17. Chand KK, Diachin LF, Li X, Ollivier-Gooch C, Seol ES, Shephard MS, Tautges T, Trease H (2007) Toward interoperable mesh, geometry and field components for PDE simulation development. Eng Comput 24(2):165–182

    Article  Google Scholar 

  18. Ollivier-Gooch C, Diachin L, Shephard MS, Tautges T, Kraftcheck J, Leung V, Luo X, Miller M (2010) An interoperable, data-structure-neutral component for mesh query and manipulation. ACM Trans Math Softw 37(3):29:1–29

    Google Scholar 

  19. Weiler KJ (1988) The radial-edge structure: a topological representation for non-manifold geometric boundary representations. Geom Model CAD Appl, 3–36

  20. Shephard MS, Georges MK (1992) Reliability of automatic 3D mesh generation. Comput Meth Appl Mech Eng 101(1–3):443–462

    Article  MATH  MathSciNet  Google Scholar 

  21. Li X, Shephard MS, Beall MW (2003) Accounting for curved domains in mesh adaptation. Int J Numer Meth Eng 58(2):247–276

    Article  MATH  Google Scholar 

  22. Beall MW, Walsh J, Shephard MS (2003) Accessing CAD geometry for mesh generation. In: 12th international meshing roundtable. Sandia National Laboratories, pp 33–42, SAND-2003-3030P

  23. Tautges TJ, Meyers R, Merkley K, Stimpson C, Ernst C (2004) MOAB: a mesh-oriented database. Technical report, Sandia

  24. Interoperable Technologies for Advanced Petascale Simulations (ITAPS) Center (2010) The ITAPS iMesh interface documentation (Online). http://www.itaps.org/software/iMesh_html/index.html/. Accessed 5 April 2012

  25. Beall MW, Shephard MS (1997) A general topology-based mesh data structure. Int J Numer Meth Eng 40(9):1573–1596

    Article  MathSciNet  Google Scholar 

  26. Remacle J-F, Shephard MS (2003) An algorithm oriented mesh database. Int J Numer Meth Eng 58(2):349–374

    Article  MATH  Google Scholar 

  27. Seol ES (2005) FMDB: flexible distributed mesh database for parallel automated adaptive analysis. PhD dissertation, Rensselaer Polytechnic Institute, Department of Computer Science

  28. Seol ES, MS Shephard (2006) Efficient distributed mesh data structure for parallel automated adaptive analysis. Eng Comput 22(3–4):197–213

    Article  Google Scholar 

  29. Teresco JD, Devine KD, Flaherty JE (2006) Partitioning and dynamic load balancing for the numerical solution of partial differential equations. In: Bruaset AM, Tveito A (eds) Numerical solution of partial differential equations on parallel computers. Lecture notes in computational science and engineering, vol 51. Springer, Berlin, pp 55–88

  30. Zhou M, Sahni O, Devine KD, Shephard MS, Jansen KE (2010) Controlling unstructured mesh partitions for massively parallel simulations. SIAM J Sci Comput 32:3201–3227

    Article  MATH  MathSciNet  Google Scholar 

  31. Simon HD (1991) Partitioning of unstructured problems for parallel processing. Comput Syst Eng 2(2–3):135–148

    Article  Google Scholar 

  32. Devine KD, Boman EG, Heaphy RT, Hendrickson BA, Teresco JD, Faik J, Flaherty JE, Gervasio LG (2005) New challenges in dynamic load balancing. Appl Numer Math 52(2–3):133–152

    Article  MATH  MathSciNet  Google Scholar 

  33. Devine KD, Boman EG, Heaphy RT, Bisseling RH, Catalyurek UV (2006) Parallel hypergraph partitioning for scientific computing. In: Proceedings of the 20th international parallel distributed processing symposium. IPDPS’06. IEEE Computer Society, Washington, DC, p 124

  34. Alauzet F, Li X, Seol ES, Shephard MS (2006) Parallel anisotropic 3D mesh adaptation by mesh modification. Eng Comput 21(3):247–258

    Article  Google Scholar 

  35. Silicon Graphics International (SGI) (2011) Standard template library programmer’s guide (Online). http://www.sgi.com/tech/stl/. Accessed 5 Apr 2012

  36. Gamma E, Helm R, Johnson R, Vlissides J (1994) Design patterns: elements of reusable object-oriented software, 1 edn. Addison-Wesley, Reading

    Google Scholar 

  37. Sahni O, Jansen KE, Shephard MS, Taylor CA, Beall MW (2008) Adaptive boundary layer meshing for viscous flow simulations. Eng Comput 24(3):267–285

    Article  Google Scholar 

  38. Scientific Computation Research Center (2012) (SCOREC. Flexible distributed mesh database user’s guide (Online). http://scorec.rpi.edu/FMDB/documentation.html/. Accessed 5 Apr 2012

  39. Scientific Computation Research Center (SCOREC) at Rensselaer Polytechnic Institute (2012) Simulation model and data management components (Online). http://www.scorec.rpi.edu/software.php/. Accessed 5 Apr 2012

  40. Remacle J-F, Klaas O, Flaherty JE, Shephard MS (2002) Parallel algorithm oriented mesh database. Eng Comput 18(3):274–284

    Article  Google Scholar 

  41. Ovcharenko A, Chitale K, Sahni O, Jansen KE, Shephard MS (2012) Parallel anisotropic mesh adaptation with boundary layers. Int J Numer Meth Eng (unpublished)

  42. Li X, Shephard MS, Beall MW (2005) 3D anisotropic mesh adaptation by mesh modification. Comput Meth Appl Mech Eng 194(48–49):4915–4950

    Article  MATH  MathSciNet  Google Scholar 

  43. Zhou M, Xie T, Seol S, Shephard MS, Sahni O, Jansen KE (2011) Tools to support mesh adaptation on massively parallel computers. Eng Comput, 1–15

  44. Argonne Leadership Computing Facility, Argonne National Laboratory (2012) Intrepid/challenger/surveyor guide (Online). http://www.alcf.anl.gov/resource-guides/intrepid-and-surveyor-guide/. Accessed 5 Apr 2012

  45. The Boost community (2007) The boost C++ libraries (Online). http://www.boost.org/. Accessed 5 Apr 2012

Download references

Acknowledgments

We gratefully acknowledge the support of this work by the Department of Energy (DOE) office of Science’s Scientific Discovery through Advanced Computing (SciDAC) Institute as part of the Interoperable Technologies for Advanced Petascale Simulations (ITAPS) program, under grant DE-FC02-06ER25769.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, T., Seol, S. & Shephard, M.S. Generic components for petascale adaptive unstructured mesh-based simulations. Engineering with Computers 30, 79–95 (2014). https://doi.org/10.1007/s00366-012-0288-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-012-0288-4

Keywords

Navigation