Skip to main content
Log in

Optimal parametrizations for surface remeshing

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

We present different linear parametrization techniques for the purpose of surface remeshing: the energy minimizing harmonic map, the convex map, and the least square conformal map. The implementation of those mappings as well as the associated boundary conditions is presented in a unified manner and the issues of triangle flipping and folding that may arise with discrete linear mappings are discussed. We explore the optimality of these parametrizations for surface remeshing by applying several classical 2D meshing algorithms in the parametric space and by comparing the quality of the generated elements. We present various examples that permit to draw guidelines that a user can follow in choosing the best parametrization scheme for a specific topology, geometry, and characteristics of the target output mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Notes

  1. Non-closed surfaces are surfaces of zero genius with at least one boundary. The genus of a surface is defined as the number of handles in the surface.

  2. For example, a non-closed surface with one hole (see Fig. 9) has N = 2 closed boundaries.

  3. The STL triangulation of the aorta and the tooth can be downloaded from the INRIA database http://www-roc.inria.fr/gamma/gamma.php and the STL triangulation of the pelvis is presented in [28].

  4. The model can be downloaded at the following web site: http://www.sonycsl.co.jp/person/nielsen/visualcomputing/programs/bunny-conformal.obj.

  5. Access the wiki with username gmsh and password gmsh.

References

  1. Alliez P, Meyer M, Desbrun M (2002) Interactive geometry remeshing. In: Computer graphics (Proceedings of the SIGGRAPH 02), pp 347–354

  2. Batdorf M, Freitag LA, Ollivier-Gooch C (1997) A computational study of the effect of unstructured mesh quality on solution efficiency. In: Proceedings of 13th AIAA computational fluid dynamics conference

  3. Bechet E, Cuilliere J-C, Trochu F (2002) Generation of a finite element mesh from stereolithography (stl) files. Comput Aided Des 34(1):1–17

    Article  Google Scholar 

  4. Ben-Chen M, Gotsman C, Bunin G (2008) Conformal flattening by curvature prescription and metric scaling. Comput Graphics Forum 27(2):449–458

    Google Scholar 

  5. Bennis C, Vézien J-M, Iglésias G (1991) Piecewise surface flattening for non-distorted texture mapping. In: ACM SIGGRAPH computer graphics, pp 237–246

  6. Borouchaki H, Laug P, George PL (2000) Parametric surface meshing using a combined advancing-front generalized delaunay approach. Int J Numer Meth Eng 49:223–259

    Article  MathSciNet  Google Scholar 

  7. Choquet C (1945) Sur un type de représentation analytique généralisant la représentation conforme et défininie au moyen de fonctions harmoniques. Bull Sci Math 69:156–165

    Google Scholar 

  8. Eck M, DeRose T, Duchamp T, Hoppe H, Lounsbery M, Stuetzle W (1995) Multiresolution analysis of arbitrary meshes. In: SIGGRAPH ’95: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, pp 173–182

  9. Floater MS (1997) Parametrization and smooth approximation of surface triangulations. Comput Aided Geom Des 14:231–250

    Google Scholar 

  10. Floater MS (1998) Parametric tilings and scattered data approximation. Int J Shape Model 4:165–182

    Article  Google Scholar 

  11. Floater MS (2003) Mean value coordinates. Computer Aided Geometric Design 20(1):19–37

    Article  MATH  MathSciNet  Google Scholar 

  12. Floater MS (2003) One-to-one piecewise linear mappings over triangulations. Math Comput 72:685–696

    Google Scholar 

  13. Floater MS, Hormann K (2005) Surface parameterization: a tutorial and survey. Advances in multiresolution for geometric modelling

  14. George P-L, Frey P (2000) Mesh Generation. Hermes

  15. Geuzaine C, Remacle J-F (2009) Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Meth Eng 79(11):1309–1331

    Article  MATH  MathSciNet  Google Scholar 

  16. Greiner G, Hormann K (1996) Interpolating and approximating scattered 3D data with hierarchical tensor product splines. In: Surface fitting and multiresolution methods, pp 163–172

  17. Hecht F (2006) Bamg: bidimensional anisotropic mesh generator. http://www.freefem.org/ff++

  18. Hernandez V, Roman JE, Vidal V (2005) Slepc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Soft. 31(3):351–362

    Article  MATH  MathSciNet  Google Scholar 

  19. Hormann K, Greiner G (2000) Mips: an efficient global. Parametrization method. In: Curve and surface design. Vanderbilt University Press

  20. Ito Y, Nakahashi K (2002) Direct surface triangulation using stereolithography data. AIAA Journal 40(3):490–496

    Article  Google Scholar 

  21. Laug P, Boruchaki H (2003) Interpolating and meshing 3d surface grids.. International Journal for Numerical Methods in Engineering 58:209–225

    Article  MATH  Google Scholar 

  22. Lehoucq RB, Sorensen DC, Yang C (1997) Arpack users guide: solution of large scale eigenvalue problems by implicitly restarted Arnoldi methods. Society for Industrial and Applied Mathematics

  23. Levy B, Petitjean S, Ray N, Maillot J (2002) Least squares conformal maps for automatic texture atlas generation. In: Computer graphics (Proceedings of SIGGRAPH 02), pp 362–371

  24. Spagnuolo M, Attene M, Falcidieno B, Wyvill G (2003) A mapping-independent primitive for the triangulation of parametric surfaces. Graph Models 65:260–273

    Google Scholar 

  25. Maillot J, Yahia H, Verroust A (1993) Interactive texture mapping. In: Proceedings of ACM SIGGRAPH’93, pp 27–34

  26. Marchandise E, Cartonde Wiart C, Vos WG, Geuzaine C, Remacle J-F (2011) High quality surface remeshing using harmonic maps. Part II: Surfaces with high genus and of large aspect ratio. International Journal for Numerical Methods in Engineering 86(11):1303–1321

    Article  MATH  MathSciNet  Google Scholar 

  27. Marchandise E, Crosetto P, Geuzaine C, Remacle JF, Sauvage E (2011) Quality open source mesh generation for cardiovascular flow simulations. Modelling physiological flows. Springer series on modeling, simulation and applications. Springer, Berlin-Heidelberg

  28. Marchandise E, Compère G, Willemet M, Bricteux G, Geuzaine C, Remacle J-F (2010) Quality meshing based on stl triangulations for biomedical simulations. International Journal for Numerical Methods in Biomedical Engineering 83:876–889

    Google Scholar 

  29. Marcum David L (2001) Efficient generation of high-quality unstructured surface and volume grids. Engrg. Comput. 17:211–233

    Article  MATH  Google Scholar 

  30. Marcum DL, Gaither A (1999) Unstructured surface grid generation using global mapping and physical space approximation. In: Proceedings of 8th international meshing roundtable, pp 397–406

  31. Mullen P, Tong Y, Alliez P, Desbrun M (2008) Spectral conformal parameterization. In: ACM/EG symposium of geometry processing

  32. Rado T (1926) Aufgabe 41. Math-Verien

  33. Rebay S (1993) Efficient unstructured mesh generation by means of delaunay triangulation and bowyer-watson algorithm. J Comput Phys 106:25–138

    Article  Google Scholar 

  34. Remacle J-F, Geuzaine C, Compère G, Marchandise E (2010) High quality surface meshing using harmonic maps. Int J Numer Meth Eng 83:403–425

    MATH  Google Scholar 

  35. Remacle J-F, Henrotte F, Carrier-Baudouin T, Bechet E, Geuzaine C, Mouton T (2011) A frontal Delaunay quad mesh generator using the l norm. Int J Numer Meth Eng 86:1303–1321

    Google Scholar 

  36. Remacle J-F, Lambrechts J, Seny B, Marchandise E, Johnen A, Geuzaine C (2011) Blossom-Quad: a non-uniform quadrilateral mesh generator using a minimum cost perfect matching algorithm. Int J Numer Meth Eng 89:1102–119

    Article  MathSciNet  Google Scholar 

  37. Rusinkiewicz S (2004) Estimating curvatures and their derivatives on triangle meshes. In: Symposium on 3D data processing, visualization, and transmission, September 2004

  38. Sheffer A, de Sturler E (2001) Parameterization of faceted surfaces for meshing using angle-based flattening. Eng Comput 17(3):1435–5663

    Article  Google Scholar 

  39. Sheffer A, Praun E, Rose K (2006) Mesh parameterization methods and their applications. Found Trends Comput Graph Vis 2(2):105–171

    Article  Google Scholar 

  40. Sheffer A, Lévy B, Lorraine I (2005) Maxim Mogilnitsky, and Er Bogomyakov. Abf++: fast and robust angle based flattening. ACM Trans Graph 24:311–330

    Google Scholar 

  41. Szczerba D, McGregor R, Szekely G (2007) High quality surface mesh generation for multi-physics bio-medical simulations. In: Computational Science—ICCS 2007, vol 4487. Springer, Berlin, pp 906–913

  42. Tristano JR, Owen SJ, Canann SA (1998) Advancing front surface mesh generation in parametric space using Riemannian surface definition. In: Proceedings of 7th international meshing roundtable. Sandia National Laboratory, pp 429–455

  43. Tutte WT (1963) How to draw a graph. In: Proceedings of the London Mathematical Society, vol 13, pp 743–768

  44. Wang D, Hassan O, Morgan K, Weatheril N (2007) Enhanced remeshing from stl files with applications to surface grid generation. Commun Numer Meth Eng 23:227–239

    Article  MATH  Google Scholar 

  45. Zayer R, Lévy B, Seidel H-P (2007) Linear angle based parameterization. In: Proceedings of ACM/EG symposium on geometry processing conference

  46. Zheng Y, Weatherill NP, Hassan O (2001) Topology abstraction of surface models for three-dimensional grid generation. Eng Comput 17:28–38

    Google Scholar 

  47. Zigelman G, Kimmel R, Kiryati N (2002) Texture mapping using surface flattening via multi-dimensional scaling. IEEE Trans Vis Comput Graph 8:198–207

    Google Scholar 

  48. Frey P, George PL (2008) Mesh generation: application to finite elements. Wiley, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilie Marchandise.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchandise, E., Remacle, JF. & Geuzaine, C. Optimal parametrizations for surface remeshing. Engineering with Computers 30, 383–402 (2014). https://doi.org/10.1007/s00366-012-0309-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-012-0309-3

Keywords

Navigation