Skip to main content

Advertisement

Log in

Automated modeling of random inclusion composites

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

We present a parametric model for generating unit cells with randomly distributed inclusions. The proposed algorithm possesses (1) robustness by yielding unit cells with fiber volume fraction of up to 45 % for aspect ratios as high as 20, (2) computationally efficiency accomplished through a hierarchy of algorithms with increasing computational complexity, and (3) versatility by generating unit cells with different inclusion shapes. A statistical study aimed at determining the effective size of the unit cell is conducted. The method has been applied to various random inclusion microstructure composites, including: (1) two-dimensional chopped tow composites employed in automotive applications, (2) polyurea or polyethene coating consisting of hard and soft domains (segments) employed for energy absorption in military and industrial applications, and (3) fiber framework called fiberform embedded in or free from an amorphous matrix used as heat shield on space crafts to prevent structural damage during reentry into the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Wentorf R, Collar R, Shephard MS, Fish J (1999) Automated modeling for complex woven mesostructures. Comput Meth Appl Mech Eng 172(1):273–291

    Article  MATH  Google Scholar 

  2. Gusev AA (1997) Representative volume element size for elastic composites: a numerical study. J Mechan Phys Solids 45:1449–1459

    Article  MATH  Google Scholar 

  3. Gusev AA, Heggli M, Lusti HR, Hine PJ (2002) Orientation averaging for stiffness and thermal expansion of short fiber composites. Adv Eng Mater 4(12):931–933

    Article  Google Scholar 

  4. Duschlbauer D, Bohm HJ, Pettermann HE (2006) Computational simulation of composites reinforced by planar random fibers: homogenization and localization by unit cell and mean field approaches. J Compos Mater 40(24):2217–2234

    Article  Google Scholar 

  5. Widom B (1966) randomsequential adition of hard spheres to a volume. J Chem Phys 44(10):3888–3894

    Article  Google Scholar 

  6. Bohm HJ, Eckschlager A, Han W (2002) Multinclusion unit cell models for metal matrix composites with randomly oriented discontinuous reinforcements. Comput Mater Sci 25:42–53

    Article  Google Scholar 

  7. Torquato SHH (2002) Random heterogeneous materials: microstructure and macroscopic properties. Appl Mechan Rev 55(4):B62

    Article  Google Scholar 

  8. Williams SR, Philipse AP (2003) Random packing of spheres and spherocylinders simulated by mechanical contraction. Phys Rev E 67:051301-1-9

    Google Scholar 

  9. Tu ST, Cai WZ, Yin Y, Ling X (2005) Numerical simulationof saturation behavior of physical properties in composites with randomlyu distributed second phase. J Compos Mater 39(7):631–671

    Article  Google Scholar 

  10. Kari S, Berger H, Gabbert U (2007) Numerical evaluation of effective material properties of randomly distributed short cylindrical fiber composites. Comput Mater Sci 39:198–204

    Article  Google Scholar 

  11. Pan Y, Iorga L, Pelegri AA (2008) Numerical generation of a random chopped fiber composite RVE and its elastic properties. Compos Sci Technol 68:2792–2798

    Article  Google Scholar 

  12. Toll S (1998) Packing mechanics of fiber reinforcements. Polym Eng Sci 38(18):1337–1350

    Article  Google Scholar 

  13. Lubachevsky BD, Stillinger FH (1990) Geometric properties of random disk packings. J Stat Phys 60:561–583

    Article  MathSciNet  MATH  Google Scholar 

  14. Stafford DS,JT (2010) Unisng level sets for creating virtual random packs of non spherical convex shapes. J Comput Phys 229(9):3295–3315

    Article  MATH  Google Scholar 

  15. Hinrichsen EL, Feder J, Jossang T (1986) Geometry of random sequential adsorption. J Stat Phys 44:793–827

    Article  Google Scholar 

  16. Cooper DW (1988) Random sequential packing simulations in three dimensions for spheres. Phys Rev A 38:522–524

    Article  Google Scholar 

  17. Sherwood JD (1997) Packing of spheroids in three-dimensional space by random sequential addition. J Phys A 30(24):L839–L843

    Article  Google Scholar 

  18. Evans KE, Ferrar MD (1989) The packing of thick fibers. J Phys D 22:354–360

    Article  Google Scholar 

  19. Parkhouse JG, Kelly A (1995) The random packing of fibers in three dimensions. Proc Math Phys Sci 451(1943):737–746

    Article  Google Scholar 

  20. Evans KE, Gibson AG (1986) Prediction of the maximum packing fraction achievable in randomly oriented short fiber-composites. Compos Sci Technol 25:149–162

    Article  Google Scholar 

  21. Oskay C, Fish J (2007) Eigendeformation-based reduced order homogenization. Comput Meth Appl Mech Eng 196:1216–1243

    Google Scholar 

  22. Zheng Y, Fish J (2009) Hierarchical model reduction at multiple scales. Int J Numer Method Eng 79(3):314–339

    Google Scholar 

  23. Zheng Y, Fish J (2009) Multiple scale eigendeformation-based reduced order homogenization. Comput Meth Appl Mech Eng 198(21–26):2016–2038

    Google Scholar 

  24. Sunday D (2000) 3D game engine design: a practical approach to real-time computer graphics. 1 ed, Morgan Kaufmann

  25. Eberley D (1999) Distance between two line segmetns in 3D. Available from: http://www.geometrictools.com/

  26. Teller S (2000) Closese approach of two lines in 3D. Available from: http://people.csail.mit.edu/seth/geomlib/geomlib.html

  27. Eberley D (2001) Intersection of convex objects: The method of separating axis. Available from: http://www.geometrictools.com/

  28. Ionita A, Weitsman YJ (2006) On the mechanical response of randomly reinforced chopped-fibers composites: data and model. Compos Sci Technol 66:2566–2579

    Article  Google Scholar 

  29. Drugan WJ, Willis JR (1996) A micro-mechanical base nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J Mechan Phys Solids 44(4):497–524

    Article  MathSciNet  MATH  Google Scholar 

  30. Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination for the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40:3647–3679

    Article  MATH  Google Scholar 

  31. Huet C (1990) Application of variational concepts to size effects in elastic heterogeneous bodies. J Mechan Phys Solids 38:813–841

    Article  MathSciNet  Google Scholar 

  32. Sab K (1992) On the homogenization and simulation of random materials. Eur J Mechan A Solids 11:585–607

    MathSciNet  MATH  Google Scholar 

  33. Ostoja-Starzewski M (1998) Random fields of heterogeneous materials. Int J Solids Struct 35(19):2429–2455

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bailakanavar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bailakanavar, M., Liu, Y., Fish, J. et al. Automated modeling of random inclusion composites. Engineering with Computers 30, 609–625 (2014). https://doi.org/10.1007/s00366-012-0310-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-012-0310-x

Keywords

Navigation