Abstract
This paper aims to introduce a unified code for fluid flow modeling in complex channels reconstructed from imagery. Given a binary image of a cross-section or projection of planar connected channels with circular cross-sections, we wish to: (1) reconstruct a three-dimensional model of the boundary of the geometry, (2) establish boundary condition of the flow field, and (3) compute a fluid simulation based on a Cartesian grid. Our solution has the following advantages. First, we use the same mathematical tools throughout the process i.e. a level set function and a skeleton to describe the geometry. The skeleton of the geometry is essential in the imagery part to transform the 2D geometry into a 3D geometry but is also essential in the fluid flow part to construct a velocity field of reference for boundary conditions in the mechanical fluid flow model. Then, the integration of the geometry into the fluid mechanic code is simplified thanks to a Cartesian grid taking into account the geometry through the level set function. Finally, this work leads to a stand-alone code capable of simulating 3D flows in geometry reconstructed 2D images. We show its usefulness in applications to medical imagery (namely angiography) and bifluid flows in microchannels.



















Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Goel VR, Greenberg RK, Greenberg DP (2008) Automated vascular geometric analysis of aortic aneurysms. IEEE Comput Gr Appl 28(3):76–86
Hall RW (1989) Fast parallel thinning algorithms: parallel speed and connectivity preservation. Commun ACM 32:124–131
Ferley E, Cani M-P, Attali D (1996) Skeletal reconstruction of branching shapes. In: Hart JC, Van Overveld K, (eds), Implicit surfaces ’96, vol 31. Marie-Paule Cani-Gascuel, Eindhoven, pp 127–142
Ginzburg V, Landau L (1950) On the theory of superconductivity. Zheksper Teo Fiz 20
Shui L, van den Berg A, Eijkel JCT (2009) Interfacial tension controlled w/o and o/w 2-phase flows in microchannel. Lab Chip 9
Engl W, Roche M, Colin A, Panizza P, Ajdari A (2005) Droplet traffic at a simple junction at low capillary numbers. Phys Rev Lett 95:208304
Engl W, Ohata K, Guillot P, Colin A, Panizza P (2006) Selection of two-phase flow patterns at a simple junction in microfluidic devices. Phys Rev Lett 96:134505
Osher S, Paragios N (2003) Geometric level set methods in imaging, vision, and graphics. Springer-Verlag New York Inc, Secaucus
Fremlin DH (1997) Skeletons and central sets. In: Proceedings of the London Mathematical Society, vol 74(3). London Mathematical Society, pp 701–720.
Bernhardt A, Pihuit A, Cani MP, Barthe L (2008) Matisse: painting 2D regions for modeling free-form shapes
Igarashi T, Matsuoka S, Tanaka H (1999) Teddy: a sketching interface for 3D freeform design. pp 409–416
Gasteiger R, Neugebauer M, Kubisch C, Preim B (2010) Adapted Surface Visualization of Cerebral Aneurysms with Embedded Blood Flow Information. In: Eurographics workshop on visual computing for biology and medicine (EG VCBM), pp 25–32
Schumann C, Neugebauer M, Bade R, Preim B, Peitgen H-O (2008) Implicit vessel surface reconstruction for visualization and simulation. Int J Comput Assist Radiol Surg (IJCARS) 2(5):275–286
Tozaki T, Kawata Y, Niki N, Ohmatsu H, Moriyama N (1995) 3D visualization of blood vessels and tumor using thin slice CT. IEEE Nucl Sci Symp Med Imaging Conf 3:1470–1474
Kawata Y, Niki N, Kumazaki T (1995) An approach for detecting blood vessel diseases from cone-beam CT image. In: IEEE International Conference on Image Processing pp 500–503
Slabaugh G, Unal G, Fang T, Rossignac J, Whited B (2008) Variational skinning of an ordered set of discrete 2d balls. In: Proceedings of the 5th international conference on advances in geometric modeling and processing, GMP’08, Springer, Heidelberg, pp 450–461
Whited B, Rossignac J, Slabaugh G, Fang T, Unal G (2009) Pearling: stroke segmentation with crusted pearl strings. Pattern Recognit Image Anal 19:277–283 doi:10.1134/S1054661809020102
Slabaugh G, Whited B, Rossignac J, Fang T, Unal G (2010) 3D ball skinning using pdes for generation of smooth tubular surfaces. Comput Aided Des 42(1):18–26
Rossignac J, Whited B, Slabaugh G, Fang T, Unal G (2007) Pearling: 3D interactive extraction of tubular structures from volumetric images. In: MICCAI workshop interaction in medical image analysis and visualization
Kass M, Witkin A, Terzopoulos D (1988) Snakes: Active contour models. Int J Comput Vis 1(4):321–331
Lorigo LM, Faugeras OD, Grimson WEL, Keriven R, Kikinis R, Nabavi A, Westin C-F (2001) Curves: curve evolution for vessel segmentation. Med Image Anal 5(3):195–206
Shah J, Mumford D (1985) Boundary detection by minimizing functionals. In: IEEE conference on computer vision and patter recognition, pp 22–26
Shah J, Mumford D (1989) Optimal approximation by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 42: 577–685
Bertozzi AL, Esedoglu S, Gillette A (2007) Inpainting of binary images using the Cahn–Hilliard equation. IEEE Trans Image Process 16(1):285–291
Aubert G, Aujol J-F, Blanc-Féraud L (2005) Detecting codimension: two objects in an image with Ginzburg–Landau models. Int J Comput Vis 65(1–2):29–42
Pal N, Pal S (1993) A review on image segmentation techniques. Pattern Recognit 26(9):1277–1294
Sethian JA (1999) Level set methods and fast marching methods, ISBN 0-521-64557-3
Jiang X, Bunke H (1999) Edge detection in range images based on scan line approximation. Comput Vis Image Underst 73:183–199
Yim Y, Hong H (2006) Smoothing segmented lung boundary in chest ct images using scan line search. In: Progress in pattern recognition, image analysis and applications, vol 4225 of Lecture Notes in Computer Science, Springer, Heidelberg, pp 147–156
Telea A, van Wijk JJ (2002) An augmented fast marching method for computing skeletons and centerlines. In: VISSYM ’02 Proceedings of the symposium on data visualisation, Eurographics Association, Aire-la-Ville, pp 251–258
Osher S, Sethian JA (1988) Fronts propagating with curvature dependant speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79:12–49
Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. Appl Math Sci p 153
Mark Sussman PS, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114:146–159
Unverdi SO, Tryggvason G (1992) A front-tracking method for viscous, incompressible, multi-fluid flows. J Comput Phys 100(1):25–37
Kothe DB, Brackbill JU, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354
Galusinski C, Vigneaux P (2008) On stability condition for bifluid flows with surface tension: application to microfluidics. J Comput Phys 227(12):6140–6164
Jiang G-S, Peng D (2000) Weighted eno schemes for hamilton-jacobi equations. SIAM J Sci Comput 21(6):2126–2143
Salmon S, Thiriet M, Gerbeau J-F (2003) Medical image-based computational model of pulsatile flow in saccular aneurisms. M2AN Math Model Numer Anal 37(4):663–679
Astorino M, Gerbeau J-F, Pantz O, Traoré K-F (2009) Fluid-structure interaction and multi-body contact: application to aortic valves. Comput Methods Appl Mech Eng 198(45–46):3603–3612
Cottet G-H, Maitre E (2006) A level set method for fluid-structure interactions with immersed surfaces. Math Models Methods Appl Sci 16(3):415–438
Maitre E, Milcent T, Cottet G-H, Raoult A, Usson Y (2009) Applications of level set methods in computational biophysics. Math Comput Model 49(11–12):2161–2169
Acknowledgments
This work has been supported by French National Research Agency (ANR) through COSINUS program (project CARPEINTER ANR-08-COSI-002).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Galusinski, C., Nguyen, C. Skeleton and level set for channel construction and flow simulation. Engineering with Computers 31, 289–303 (2015). https://doi.org/10.1007/s00366-014-0351-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00366-014-0351-4