Skip to main content
Log in

On the identification of kinematic hardening with reverse shear test

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

An inverse analysis methodology for determining the parameters of the kinematic law of sheet metals is proposed. The sensitivity of the load versus displacement curves, obtained by reverse shear tests of rectangular and notched specimens, to the kinematic law parameters are studied following a forward analysis, based on finite element simulations. Afterwards, an inverse analysis methodology using a gradient-based Levenberg–Marquardt method is established, by evaluating the relative difference between numerical and experimental results of the shear test, i.e. the load evolution in function of the displacements of the grips. The use of a notched specimen is proposed in order to allow an easy and suitable numerical representation of the boundary conditions of the shear experimental test. This methodology has proven to be appropriate for determining the parameters of the kinematic hardening law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chaparro BM, Thuillier S, Menezes LF, Manach PY, Fernandes JV (2008) Material parameters identification: gradient-based, genetic and hybrid optimization algorithms. Comput Mater Sci 44:339–346. doi:10.1016/j.commatsci.2008.03.028

    Article  Google Scholar 

  2. Yoshida F, Uemori T, Toropov V (1998) Identification of material parameters in constitutive model for sheet metals from cyclic bending tests. Int J Mech Sci 40:237–249. doi:10.1016/S0020-7403(97)00052-0

    Article  Google Scholar 

  3. Yoshida F, Uemori T, Fujiwara K (2002) Elastic–plastic behaviour of steel sheets under in-plane cyclic tension–compression at large strain. Int J Plast 18:633–659. doi:10.1016/S0749-6419(01)00049-3

    Article  MATH  Google Scholar 

  4. Eggertsen PA, Mattiasson K (2010) An efficient inverse approach for material hardening parameter identification from a three-point bending test. Eng Comp 177:96–103. doi:10.1007/s00366-009-0149-y

    Google Scholar 

  5. Bouvier S, Haddadi H, Levée P, Teodosiu C (2006) Simple shear tests: experimental techniques and characterization of the plastic anisotropy of rolled sheets at large strains. J Mater Process Technol 177:96–103. doi:10.1016/j.jmatprotec.2005.09.003

    Article  Google Scholar 

  6. G’Sell C, Boni S, Shrivastave S (1983) Application of the plane simple shear test for determination of the plastic behaviour of solid polymers at large strains. J Mater Sci 18:903–918. doi:10.1007/BF00745590

    Article  Google Scholar 

  7. Miyauchi K (1984) A proposal of a planar simple shear test in sheet metals. Sci Paper Inst Phys Chem Res 78:27–40

    Google Scholar 

  8. Oliveira MC, Alves JL, Menezes LF (2008) Algorithms and strategies for treatment of large deformation frictional contact in the numerical simulation of deep drawing process. Arch Comput Method Eng 15:113–162. doi:10.1007/s11831-008-9018-x

    Article  MathSciNet  MATH  Google Scholar 

  9. Hill R (1948) A theory of yielding and plastic flow of anisotropic metals. Proc R Soc Lond Ser A 193:281–297. doi:10.1098/rspa.1948.0045

    Article  MATH  Google Scholar 

  10. Swift HW (1952) Plastic instability under plane stress. J Mech Phys Solids 1:1–18. doi:10.1016/0022-5096(52)90002-1

    Article  Google Scholar 

  11. Lemaître J, Chaboche J (1990) Mechanics of solid materials. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  12. Prates PA, Oliveira MC, Fernandes JV (2014) On the equivalence between sets of parameters of the yield criterion and the isotropic and kinematic hardening laws. Inter J Mater Form. doi:10.1007/s12289-014-1173-z

    MATH  Google Scholar 

  13. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441. doi:10.1137/0111030

    Article  MathSciNet  MATH  Google Scholar 

  14. Drucker DC (1949) Relation of experiments to mathematical theories of plasticity. J Appl Mech 16:349–357

    MathSciNet  MATH  Google Scholar 

  15. Cazacu O, Barlat F (2001) Generalization of Drucker’s yield criterion to orthotropy. Math Phys Solids 6:613–630. doi:10.1177/108128650100600603

    Article  MATH  Google Scholar 

  16. Prates PA, Oliveira MC, Fernandes JV (2014) A new strategy for the simultaneous identification of constitutive laws parameters of metal sheets using a single test. Comput Mater Sci 85:102–120. doi:10.1016/j.commatsci.2013.12.043

    Article  Google Scholar 

Download references

Acknowledgments

This research work is sponsored by national funds from the Portuguese Foundation for Science and Technology (FCT) via the projects PTDC/EME–TME/113410/2009 and PEst-C/EME/UI0285/2013 and by FEDER—Fundo Europeu de Desenvolvimento Regional funds through the program COMPETE—Programa Operacional Factores de Competitividade, under the project CENTRO-07-0224-FEDER-002001 (MT4MOBI). One of the authors, P.A. Prates, was supported by a grant for scientific research (SFRH/BD/68398/2010) from the FCT. All supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. G. Pereira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, A.F.G., Prates, P.A., Sakharova, N.A. et al. On the identification of kinematic hardening with reverse shear test. Engineering with Computers 31, 681–690 (2015). https://doi.org/10.1007/s00366-014-0369-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-014-0369-7

Keywords

Navigation