Skip to main content
Log in

Efficient parallel optimization of volume meshes on heterogeneous computing systems

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

We describe a parallel algorithmic framework for optimizing the shape of elements in a simplicial volume mesh. Using fine-grained parallelism and asymmetric multiprocessing on multi-core CPU and modern graphics processing unit hardware simultaneously, we achieve speedups of more than tenfold over current state-of-the-art serial methods. In addition, improved mesh quality is obtained by optimizing both the surface and the interior vertex positions in a single pass, using feature preservation to maintain fidelity to the original mesh geometry. The framework is flexible in terms of the core numerical optimization method employed, and we provide performance results for both gradient-based and derivative-free optimization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Boman E, Bozda D, Catalyurek U, Gebremedhin A, Manne F (2005) A scalable parallel graph coloring algorithm for distributed memory computers. In: Cunha J, Medeiros P (eds) Euro-Par 2005 parallel processing, vol 3648., Lecture notes in computer scienceSpringer, Berlin, pp 241–251

    Chapter  Google Scholar 

  2. DAmato J, Vnere M (2013) A CPUGPU framework for optimizing the quality of large meshes. J Parallel Distrib Comput 73(8):1127–1134

  3. Fleurent C, Ferland JA (1996) Genetic and hybrid algorithms for graph coloring. Ann Oper Res 63(3):437–461

    Article  MATH  Google Scholar 

  4. Freitag L, Jones M, Plassmann P (1999) A parallel algorithm for mesh smoothing. SIAM J Sci Comput 20(6):2023–2040

    Article  MathSciNet  MATH  Google Scholar 

  5. Freitag L, Knupp P, Munson T, Shontz S (2004) A comparison of inexact Newton and coordinate descent mesh optimization techniques. In: Proceedings of the 13th international meshing roundtable, Williamsburg, pp 243–254

  6. Freitag L, Knupp P, Munson T, Shontz S (2006) A comparison of two optimization methods for mesh quality improvement. Invit Submiss Eng Comput 22(2):61–74

    Article  Google Scholar 

  7. Freitag LA, Plassmann P (2000) Local optimization-based simplicial mesh untangling and improvement. Int J Numer Methods Eng 49(1–2):109–125

    Article  MATH  Google Scholar 

  8. Garimella RV, Shashkov MJ, Knupp PM (2004) Triangular and quadrilateral surface mesh quality optimization using local parametrization. Comput Methods Appl Mech Eng 193(911):913–928

    Article  MATH  Google Scholar 

  9. Gorman G, Southern J, Farrell P, Piggott M, Rokos G, Kelly P (2012) Hybrid OpenMP/MPI anisotropic mesh smoothing. Proc Comput Sci 9(0):1513–1522 (proceedings of the international conference on computational science, ICCS 2012)

  10. Gyrfs A, Lehel J (1988) On-line and first fit colorings of graphs. J Graph Theory 12(2):217–227

    Article  MathSciNet  Google Scholar 

  11. Jiao X, Alexander P (2005) Parallel feature-preserving mesh smoothing. In: Gervasi O, Gavrilova M, Kumar V, Lagan A, Lee H, Mun Y, Taniar D, Tan C (eds) Computational science and its applications ICCSA 2005, vol 3483., Lecture notes in computer scienceSpringer, Berlin, pp 1180–1189

    Chapter  Google Scholar 

  12. Jiao X, Bayyana NR (2008) Identification of c1 and c2 discontinuities for surface meshes in CAD. Comput Aided Des 40:160–175

    Article  Google Scholar 

  13. Jones MT, Plassmann PE (1993) A parallel graph coloring heuristic. SIAM J Sci Comput 14(3):654–669

    Article  MathSciNet  MATH  Google Scholar 

  14. Lewis A, Overton M (2009) Nonsmooth optimization via BFGS. SIAM J Optim (submitted)

  15. Liu A, Joe B (1994) Relationship between tetrahedron shape measures. BIT Numer Math 34(2):268–287

    Article  MathSciNet  MATH  Google Scholar 

  16. McLaurin D, Shontz S (2014) Automated edge grid generation based on arc-length optimization. In: Sarrate J, Staten M (eds) Proceedings of the 22nd international meshing roundtable, pp 385–403. Springer, New York

  17. Montenegro R, Escobar J, Montero G (2005) Quality improvement of surface triangulations. In: Hanks B (ed) Proceedings of the 14th international meshing roundtable. Springer, Berlin, pp 469–480

    Chapter  Google Scholar 

  18. Munson T (2005) Optimizing the quality of mesh elements. SIAG/Optim News Views 16:27–34

    Google Scholar 

  19. Munson T (2007) Mesh shape-quality optimization using the inverse mean-ratio metric. Math Program 110:561–590

    Article  MathSciNet  MATH  Google Scholar 

  20. Park J, Shontz SM (2010) Two derivative-free optimization algorithms for mesh quality improvement. Proc Comput Sci 1(1):387–396 (ICCS 2010)

  21. Sastry S, Shontz S, Vavasis S (2014) A log-barrier method for mesh quality improvement and untangling. Eng Comput 30(3):315–329

    Article  Google Scholar 

  22. Shaffer E, Cheng Z, Yeh R, Zagaris G, Olson L (2014) Efficient GPU-based optimization of volume meshes. In: Bader M (ed) Parallel computing: accelerating computational science and engineering (CSE). Advances in parallel computing, vol 25. IOS Press BV, Amsterdam, pp 285–294

  23. Shaffer E, Zagaris G (2011) GPU accelerated derivative-free mesh optimization. In: Hwu W-M (ed) GPU computing gems jade edition. Applications of GPU computing series, chap 13, 1st edn. Morgan Kaufmann, Waltham, pp 145–154

  24. Shewchuk J (2002) What is a good linear element? Interpolation, conditioning, and quality measures. In: Proceedings of the 11th international meshing roundtable, pp 115–126

  25. Vartziotis D, Wipper J, Schwald B (2009) The geometric element transformation method for tetrahedral mesh smoothing. Comput Methods Appl Mech Eng 199(14):169–182

    Article  MathSciNet  MATH  Google Scholar 

  26. Volkov V, Kazian B (2008) Fitting FFT onto the G80 architecture, vol 40. University of California, Berkeley

    Google Scholar 

  27. Walton S, Hassan O, Morgan K (2013) Reduced order mesh optimisation using proper orthogonal decomposition and a modified cuckoo search. Int J Numer Methods Eng 93(5):527–550

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuofu Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Z., Shaffer, E., Yeh, R. et al. Efficient parallel optimization of volume meshes on heterogeneous computing systems. Engineering with Computers 33, 717–726 (2017). https://doi.org/10.1007/s00366-014-0393-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-014-0393-7

Keywords

Navigation