Skip to main content
Log in

Anisotropic boundary layer mesh generation for immersed complex geometries

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This paper proposes a new method to build boundary layer meshes over an immersed complex geometry. It allows to generate an anisotropic semi-structured mesh with a smooth gradation of mesh size from a geometry immersed into an arbitrary coarse domain, while capturing and keeping the interface. The idea is to generate an a priori mesh fitting the geometry boundary layer which is ready for simulations. The mesh size distribution is driven by a levelset distance function and is determined using physical parameters available before the simulation, based on the boundary layer theory. The aspect ratio is then determined knowing the shape of the geometry, and all is applied in a metric tensor field using a gradation thanks to the new multi-levelset method. Then, the mesh generator adapt the initial mesh on the given metric field to create the desired boundary layer mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Jones MW, Baerentzen JA, Sramek M (2006) 3d distance fields: a survey of techniques and applications. IEEE Trans Vis Comput Graph 12(4):581–599. doi:10.1109/TVCG.2006.56

    Article  Google Scholar 

  2. Mesri Y, Digonnet H, Coupez T (2009) Advanced parallel computing in material forming with CIMLib. Eur J Comput Mech 18(7–8):669–694. doi:10.3166/ejcm.18.669-694

  3. Borouchaki H, George PL, Mohammadi B (1997) Delaunay mesh generation governed by metric specifications Part II. In: Applications. Finite elements in analysis and design 25(12):85–109. doi:10.1016/S0168-874X(96)00065-0.

  4. Borouchaki H, George PL, Hecht F, Laug P, Saltel E (1997) Delaunay mesh generation governed by metric specifications. Part I. Algorithms. In: Finite elements in analysis and design 25(12):61–83. doi:10.1016/S0168-874X(96)00057-1

  5. Gruau C, Coupez T (2005) 3d tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric. Comput Meth Appl Mech Eng 194(4849):4951–4976. doi:10.1016/j.cma.2004.11.020

  6. Schlichting H (1979) Boundary-layer theory. Mcgraw Hill, New York

  7. Chitale KC, Rasquin M, Sahni O, Shephard MS, Jansen KE (2014) Boundary layer adaptivity for incompressible turbulent flows. arXiv:1405.0620 [physics]

  8. Sahni O, Jansen KE, Shephard MS, Taylor CA, Beall MW (2008) Adaptive boundary layer meshing for viscous flow simulations. Eng Comput 24(3):267–285. doi:10.1007/s00366-008-0095-0

  9. Kallinderis Y, Kavouklis C (2005) A dynamic adaptation scheme for general 3-D hybrid meshes. Comput Meth Appl Mech Eng 194(4849):5019–5050. doi:10.1016/j.cma.2004.11.023

  10. Marcum D, Alauzet F (2014) Aligned metric-based anisotropic solution adaptive mesh generation. Procedia Eng 82:428–444. doi:10.1016/j.proeng.2014.10.402

  11. Mavriplis DJ (1995) An advancing front delaunay triangulation algorithm designed for robustness. J Comput Phys 117(1):90–101. doi:10.1006/jcph.1995.1047

  12. Garimella RV, Shephard MS (2000) Boundary layer mesh generation for viscous flow simulations. Int J Numer Meth Eng 49(1–2):193–218. doi:10.1002/1097-0207(20000910/20)49:1/2<193::AID-NME929>3.0.CO;2-R

  13. Bottasso CL, Detomi D (2002) A procedure for tetrahedral boundary layer mesh generation. Eng Comput 18(1):66–79. doi:10.1007/s003660200006

  14. Connell S, Braaten M (1995) Semi-structured mesh generation for 3d Navier–Stokes calculations. In: 12th computational fluid dynamics conference. http://arc.aiaa.org/doi/abs/10.2514/6.1995-1679

  15. Cousteix J (1989) Aérodynamique: turbulence et couche limite. Cépaduès-editions (1989)

  16. Loseille A, Alauzet F (2011) Continuous mesh framework part i: well-posed continuous interpolation error. SIAM J Numer Anal 49(1):38–60. doi:10.1137/090754078

  17. Hachem E, Feghali S, Codina R, Coupez T (2013) Immersed stress method for fluidstructure interaction using anisotropic mesh adaptation. Int J Numer Meth Eng 94(9):805–825. doi:10.1002/nme.4481

  18. Quan DL, Toulorge T, Marchandise E, Remacle JF, Bricteux G (2014) Anisotropic mesh adaptation with optimal convergence for finite elements using embedded geometries. Comput Meth Appl Mech Eng 268:65–81. doi:10.1016/j.cma.2013.09.007

  19. Rumsey C (2015) 2d NACA 0012 airfoil validation for turbulence model numerical analysis. http://turbmodels.larc.nasa.gov/naca0012numerics_val.html

  20. Ahmed S, Ramm G, Faltin G (1984) Some salient features of the time-averaged ground vehicle wake. SAE technical paper 840300. http://papers.sae.org/840300/

  21. Franck G, Nigro N, Storti MA, D’Elía J (2009) Numerical simulation of the flow around the Ahmed vehicle model. Latin Am Appl Res 39(4):295–306. http://www.scielo.org.ar/scielo.php?pid=S0327-07932009000400003&script=sci_arttext&tlng=en

  22. Strachan R, Knowles R, Lawson N (2005) Comparisons between CFD and experimental results for a simplified car model in wall proximity. Tech. rep

  23. Fares E (2006) Unsteady flow simulation of the Ahmed reference body using a lattice Boltzmann approach. Comput Fluids 35(89):940–950. doi:10.1016/j.compfluid.2005.04.011.

  24. Mesri Y, Guillard H, Coupez T (2012) Automatic coarsening of three dimensional anisotropic unstructured meshes for multigrid applications. Appl Math Comput 218(21):10500–10519. doi:10.1016/j.amc.2012.04.014.

  25. Loseille A (2014) Metric-orthogonal anisotropic mesh generation. Procedia Eng 82:403–415. doi:10.1016/j.proeng.2014.10.400

  26. Shewchuk JR (2002) What is a good linear finite element? interpolation, conditioning, anisotropy, and quality measures. Tech. rep. In: Proceedings of the 11th international meshing roundtable

Download references

Acknowledgments

This work has been done in the MAIDESC ANR project which is supported by the French Ministery of Research under contract ANR-13-MONU-0010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laure Billon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Billon, L., Mesri, Y. & Hachem, E. Anisotropic boundary layer mesh generation for immersed complex geometries. Engineering with Computers 33, 249–260 (2017). https://doi.org/10.1007/s00366-016-0469-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-016-0469-7

Keywords