Abstract
This paper proposes a new method to build boundary layer meshes over an immersed complex geometry. It allows to generate an anisotropic semi-structured mesh with a smooth gradation of mesh size from a geometry immersed into an arbitrary coarse domain, while capturing and keeping the interface. The idea is to generate an a priori mesh fitting the geometry boundary layer which is ready for simulations. The mesh size distribution is driven by a levelset distance function and is determined using physical parameters available before the simulation, based on the boundary layer theory. The aspect ratio is then determined knowing the shape of the geometry, and all is applied in a metric tensor field using a gradation thanks to the new multi-levelset method. Then, the mesh generator adapt the initial mesh on the given metric field to create the desired boundary layer mesh.





















Similar content being viewed by others
References
Jones MW, Baerentzen JA, Sramek M (2006) 3d distance fields: a survey of techniques and applications. IEEE Trans Vis Comput Graph 12(4):581–599. doi:10.1109/TVCG.2006.56
Mesri Y, Digonnet H, Coupez T (2009) Advanced parallel computing in material forming with CIMLib. Eur J Comput Mech 18(7–8):669–694. doi:10.3166/ejcm.18.669-694
Borouchaki H, George PL, Mohammadi B (1997) Delaunay mesh generation governed by metric specifications Part II. In: Applications. Finite elements in analysis and design 25(12):85–109. doi:10.1016/S0168-874X(96)00065-0.
Borouchaki H, George PL, Hecht F, Laug P, Saltel E (1997) Delaunay mesh generation governed by metric specifications. Part I. Algorithms. In: Finite elements in analysis and design 25(12):61–83. doi:10.1016/S0168-874X(96)00057-1
Gruau C, Coupez T (2005) 3d tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric. Comput Meth Appl Mech Eng 194(4849):4951–4976. doi:10.1016/j.cma.2004.11.020
Schlichting H (1979) Boundary-layer theory. Mcgraw Hill, New York
Chitale KC, Rasquin M, Sahni O, Shephard MS, Jansen KE (2014) Boundary layer adaptivity for incompressible turbulent flows. arXiv:1405.0620 [physics]
Sahni O, Jansen KE, Shephard MS, Taylor CA, Beall MW (2008) Adaptive boundary layer meshing for viscous flow simulations. Eng Comput 24(3):267–285. doi:10.1007/s00366-008-0095-0
Kallinderis Y, Kavouklis C (2005) A dynamic adaptation scheme for general 3-D hybrid meshes. Comput Meth Appl Mech Eng 194(4849):5019–5050. doi:10.1016/j.cma.2004.11.023
Marcum D, Alauzet F (2014) Aligned metric-based anisotropic solution adaptive mesh generation. Procedia Eng 82:428–444. doi:10.1016/j.proeng.2014.10.402
Mavriplis DJ (1995) An advancing front delaunay triangulation algorithm designed for robustness. J Comput Phys 117(1):90–101. doi:10.1006/jcph.1995.1047
Garimella RV, Shephard MS (2000) Boundary layer mesh generation for viscous flow simulations. Int J Numer Meth Eng 49(1–2):193–218. doi:10.1002/1097-0207(20000910/20)49:1/2<193::AID-NME929>3.0.CO;2-R
Bottasso CL, Detomi D (2002) A procedure for tetrahedral boundary layer mesh generation. Eng Comput 18(1):66–79. doi:10.1007/s003660200006
Connell S, Braaten M (1995) Semi-structured mesh generation for 3d Navier–Stokes calculations. In: 12th computational fluid dynamics conference. http://arc.aiaa.org/doi/abs/10.2514/6.1995-1679
Cousteix J (1989) Aérodynamique: turbulence et couche limite. Cépaduès-editions (1989)
Loseille A, Alauzet F (2011) Continuous mesh framework part i: well-posed continuous interpolation error. SIAM J Numer Anal 49(1):38–60. doi:10.1137/090754078
Hachem E, Feghali S, Codina R, Coupez T (2013) Immersed stress method for fluidstructure interaction using anisotropic mesh adaptation. Int J Numer Meth Eng 94(9):805–825. doi:10.1002/nme.4481
Quan DL, Toulorge T, Marchandise E, Remacle JF, Bricteux G (2014) Anisotropic mesh adaptation with optimal convergence for finite elements using embedded geometries. Comput Meth Appl Mech Eng 268:65–81. doi:10.1016/j.cma.2013.09.007
Rumsey C (2015) 2d NACA 0012 airfoil validation for turbulence model numerical analysis. http://turbmodels.larc.nasa.gov/naca0012numerics_val.html
Ahmed S, Ramm G, Faltin G (1984) Some salient features of the time-averaged ground vehicle wake. SAE technical paper 840300. http://papers.sae.org/840300/
Franck G, Nigro N, Storti MA, D’Elía J (2009) Numerical simulation of the flow around the Ahmed vehicle model. Latin Am Appl Res 39(4):295–306. http://www.scielo.org.ar/scielo.php?pid=S0327-07932009000400003&script=sci_arttext&tlng=en
Strachan R, Knowles R, Lawson N (2005) Comparisons between CFD and experimental results for a simplified car model in wall proximity. Tech. rep
Fares E (2006) Unsteady flow simulation of the Ahmed reference body using a lattice Boltzmann approach. Comput Fluids 35(89):940–950. doi:10.1016/j.compfluid.2005.04.011.
Mesri Y, Guillard H, Coupez T (2012) Automatic coarsening of three dimensional anisotropic unstructured meshes for multigrid applications. Appl Math Comput 218(21):10500–10519. doi:10.1016/j.amc.2012.04.014.
Loseille A (2014) Metric-orthogonal anisotropic mesh generation. Procedia Eng 82:403–415. doi:10.1016/j.proeng.2014.10.400
Shewchuk JR (2002) What is a good linear finite element? interpolation, conditioning, anisotropy, and quality measures. Tech. rep. In: Proceedings of the 11th international meshing roundtable
Acknowledgments
This work has been done in the MAIDESC ANR project which is supported by the French Ministery of Research under contract ANR-13-MONU-0010.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Billon, L., Mesri, Y. & Hachem, E. Anisotropic boundary layer mesh generation for immersed complex geometries. Engineering with Computers 33, 249–260 (2017). https://doi.org/10.1007/s00366-016-0469-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00366-016-0469-7