Skip to main content
Log in

The meshfree strong form methods for solving one dimensional inverse Cauchy-Stefan problem

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, we extend the application of meshfree node based schemes for solving one-dimensional inverse Cauchy-Stefan problem. The aim is devoted to recover the initial and boundary conditions from some Cauchy data lying on the admissible curve s(t) as the extra overspecifications. To keep matters simple, the problem has been considered in one dimensional, however the physical domain of the problem is supposed as an irregular bounded domain in \(\mathbb {R}^2\). The methods provide the space-time approximations for the heat temperature derived by expanding the required approximate solutions using collocation scheme based on radial point interpolation method (RPIM). The proposed method makes appropriate shape functions which possess the important Delta function property to satisfy the essential conditions automatically. In addition, to conquer the ill-posedness of the problem, particular optimization technique has been applied for solving the system of equations \(Ax=b\) in which A is a nonsymmetric stiffness matrix. As the consequences, reliable approximate solutions are obtained which continuously depend on input data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Samarskii A, Vabishchevich A (2007) Numerical methods for solving inverse problems of mathematical physics. Walter de Gruyter, Berlin

    Book  MATH  Google Scholar 

  2. Tikhonov A, Arsenin V (1986) Solution methods for Ill-posed problems. Nauka, Moscow

    MATH  Google Scholar 

  3. Vabishchevich A, Samarskii A (1999) Additive schemes for mathematical-physics problems. Nauka, Moscow

    MATH  Google Scholar 

  4. Beck JV, Blackwell B, C. R. S. C. Jr. (1985) Inverse heat conduction, J. Wiley-Intersc, New York

  5. Johansson B, Lesnic D (2008) A procedure for determining a spacewise dependent heat source and the initial temperature. Appl Anal 87:265–276

    Article  MathSciNet  MATH  Google Scholar 

  6. Johansson B, Lesnic D (2007) A variational method for identifying a spacewise-dependent heat source. IMA J Appl Math 72:748–760

    Article  MathSciNet  MATH  Google Scholar 

  7. Cannon J, Lin Y, Xu S (1994) Numerical procedures for the determination of an unknown coefficient in semi-linear parabolic differential equations. Inverse Probl 10:227–243

    Article  MathSciNet  MATH  Google Scholar 

  8. Cannon J, Yin H (1990) Numerical solutions of some parabolic inverse problems. Numer Methods Partial Differen Eqs 2:177–191

    Article  MathSciNet  MATH  Google Scholar 

  9. Dehghan M (2006) A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications. Numer Meth Part Diff Eq 22:220–257

    Article  MathSciNet  MATH  Google Scholar 

  10. Dehghan M (2005) Efficient techniques for the second-order parabolic equation subject to nonlocal specifications. Appl Numer Math 52:39–62

    Article  MathSciNet  MATH  Google Scholar 

  11. Dehghan M (2007) The one-dimensional heat equation subject to a boundary integral specification. Chaos Solitons Fract 32:661–675

    Article  MathSciNet  MATH  Google Scholar 

  12. Johansson B, Lesnic D, Reeve T (2011) A method of fundamental solutions for the one-dimensional inverse Stefan problem. Appl Math Model 35:4367–4378

    Article  MathSciNet  MATH  Google Scholar 

  13. Johansson B, Lesnic D, Reeve T (2011) Numerical approximation of the one-dimensional inverse Cauchy-Stefan problem using a method of fundamental solutions. Inverse Probl Sci Eng 19:659–677

    Article  MathSciNet  MATH  Google Scholar 

  14. Cannon JR, J. D. Jr. (1967) The Cauchy problem for the heat equation, SIAM J Numer Anal 4 :317–336

  15. Lucy L (1977) A numerical approach to the testing of fusion process. Astron J 88:1013–1024

    Article  Google Scholar 

  16. Touzot BNG, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10:307–318

    Article  MATH  Google Scholar 

  17. Melenk JM, Babuska I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139:289–314

    Article  MathSciNet  MATH  Google Scholar 

  18. Duarte C, Oden J (1996) An h-p adaptative method using clouds. Comput Methods Appl Mech Eng 139:237–262

    Article  MATH  Google Scholar 

  19. Belytschko T, Lu Y, Gu L (1994) Element-free galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  MathSciNet  MATH  Google Scholar 

  20. Dehghan M, Abbaszadeh M, Mohebbi A (2016) The use of element free Galerkin method based on moving Kriging and radial point interpolation techniques for solving some types of Turing models. Eng Anal Bound Elem 62:93–111

    Article  MathSciNet  Google Scholar 

  21. Liu W, Jun S, Zhang Y (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 21:1081–1106

    Article  MathSciNet  MATH  Google Scholar 

  22. Kansa EJ (1990) Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates. Comput Math Appl 19:127–145

    Article  MathSciNet  MATH  Google Scholar 

  23. Dehghan M, Shokri A (2009) Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions. J Comput Appl Math 230:400–410

    Article  MathSciNet  MATH  Google Scholar 

  24. Parand K, Rad JA (2012) Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via collocation method based on radial basis functions. App Math Comput 218:5292–5309

    Article  MathSciNet  MATH  Google Scholar 

  25. Rad JA, Kazem S, Parand K (2012) A numerical solution of the nonlinear controlled Duffing oscillator by radial basis functions. Comput Math Appl 64:2049–2065

    Article  MathSciNet  MATH  Google Scholar 

  26. Tatari M, Dehghan M (2009) On the solution of the non-local parabolic partial differential equations via radial basis functions. Appl Math Modell 33:1729–1738

    Article  MathSciNet  MATH  Google Scholar 

  27. Atluri S, Shen S (2002) The meshless local Petrov-Galerkin (MLPG) method, Tech Science Press

  28. Dehghan M, Mirzaei D (2009) Meshless local Petrov-Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity. Appl Numer Math 59:1043–1058

    Article  MathSciNet  MATH  Google Scholar 

  29. Dehghan M, Mirzaei D (2008) The meshless local Petrov-Galerkin MLPG method for the generalized two-dimensional non-linear Schrodinger equation. Eng Anal Bound Elem 32:747–756

    Article  MATH  Google Scholar 

  30. Liu G, Gu Y (2005) An introduction to meshfree methods and their programing. Springer, Netherlands

    Google Scholar 

  31. Rad JA, Parand K, Ballestra LV (2015) Pricing European and American options by radial basis point interpolation. Appl Math Comput 251:363–377

    MathSciNet  MATH  Google Scholar 

  32. Rad JA, Parand K, Abbasbandy S (2015) Local weak form meshless techniques based on the radial point interpolation (RPI) method and local boundary integral equation (LBIE) method to evaluate European and American options. Commun Nonlin Sci Numer Simul 22:1178–1200

    Article  MathSciNet  MATH  Google Scholar 

  33. Franke R (1982) Scattered data interpolation: test of some methods. Math Comput 38:181–200

    MathSciNet  MATH  Google Scholar 

  34. Kansa EJ (1990) Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics II. solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput Math Appl 19:147–161

    Article  MathSciNet  MATH  Google Scholar 

  35. Sharan M, Kansa EJ, Gupta S (1997) Application of the multiquadric method for numerical solution of elliptic partial differential equations. Appl Math Comput 84:275–302

    MathSciNet  MATH  Google Scholar 

  36. Power H, Zerroukat M, Chen C (1998) A numerical method for heat transfer problems using collocation and radial basis functions. Int J Numer Meth Eng 42:1263–1278

    Article  MATH  Google Scholar 

  37. Mai-Duy N, Tran-Cong T (2001) Numerical solution of differential equations using multiquadric radial basis function networks. Neural Netw 14:185–199

    Article  MATH  Google Scholar 

  38. Tatari M, Dehghan M (2010) A method for solving partial differential equations via radial basis functions: application to the heat equation. Eng Anal Bound Elem 34:206–212

    Article  MathSciNet  MATH  Google Scholar 

  39. Alipanah A, Dehghan M (2007) Numerical solution of the nonlinear Fredholm integral equations by positive definite functions. Appl Math Comput 190:1754–1761

    MathSciNet  MATH  Google Scholar 

  40. Sarra S (2005) Adaptive radial basis function method for time dependent partial differential equations. Appl Numer Math 54:79–94

    Article  MathSciNet  MATH  Google Scholar 

  41. Kazem S, Rad JA, Parand K (2012) Radial basis functions methods for solving Fokker-Planck equation. Eng Anal Bound Elem 36:181–189

    Article  MathSciNet  MATH  Google Scholar 

  42. Kazem S, Rad JA, Parand K (2012) A meshless method on non-Fickian flows with mixing length growth in porous media based on radial basis functions. Comput Math Appl 64:399–412

    Article  MathSciNet  MATH  Google Scholar 

  43. Parand K, Rad JA (2012) Kansa method for the solution of a parabolic equation with an unknown spacewise-dependent coefficient subject to an extra measurement. Compu Phys Commun. doi:10.1016/j.cpc.2012.10.012

  44. Rippa S (1999) An algorithm for selecting a good parameter \(c\) in radial basis function interpolation. Advan Comp Math 11:193–210

    Article  MathSciNet  MATH  Google Scholar 

  45. Cheng AHD, Golberg MA, Kansa EJ, Zammito Q (2003) Exponential convergence and H-\(c\) multiquadric collocation method for partial differential equations. Numer Meth Part DE 19:571–594

    Article  MathSciNet  MATH  Google Scholar 

  46. Carlson RE, Foley TA (1991) The parameter \(r^{2}\) in multiquadric interpolation. Comput Math Appl 21:29–42

    Article  MathSciNet  MATH  Google Scholar 

  47. Tarwater AE (1985) A parameter study of Hardy’s multiquadric method for scattered data interpolation, Report UCRL-53670, Lawrence Livermore National Laboratory

  48. Fasshauer G, Zhang J (2007) On choosing “optimal” shape parameters for RBF approximation. Numer Algorithms 45:346–368

    Article  MathSciNet  MATH  Google Scholar 

  49. Powell M (1992) The Theory of radial basis function approximation in 1990. Clarendon, Oxford

    MATH  Google Scholar 

  50. Buhmann MD (2000) Radial basis functions. Acta Numerica 9:1–38

    Article  MathSciNet  MATH  Google Scholar 

  51. Buhmann MD (2004) Radial basis functions: theory and implementations. Cambridge University Press, New York

    MATH  Google Scholar 

  52. Wendland H (2005) Scattered data approximation. Cambridge University Press, New York

    MATH  Google Scholar 

  53. Myers D, Iaco SD, Posa D, Cesare LD (2002) Space-time radial basis functions. Comput Math Appl 43:539–549

    Article  MathSciNet  MATH  Google Scholar 

  54. Liu G, Gu Y (1999) A point interpolation method, Proceeding of 4th Asia-Pacific Conference on computational mechanics, Singapor 1009–1014

  55. Liu G, Gu Y (2001) A point interpolation method for two-dimensional solid. Int J Numer Meth Eng 50:937–951

    Article  MATH  Google Scholar 

  56. Wang J, Liu G (2002) A point interpolation meshless method based on radial basis functions. Int J Numer Meth Eng 54:1623–1648

    Article  MATH  Google Scholar 

  57. Wang J, Liu G (2002) On the optimal shape parameters of radial basis functions used for 2\(d\) meshless methods. Comput Meth Appl Mech Eng 191:2611–2630

    Article  MathSciNet  MATH  Google Scholar 

  58. Li X, Zhu J, Zhang S (2009) A hybrid radial boundary node method based on radial basis point interpolation. Eng Anal Bound Elem 33:1273–1283

    Article  MathSciNet  MATH  Google Scholar 

  59. Liu GR, Dai K, Lim KM, Gu Y (2003) A radial point interpolation method for simulation of two-dimensional piezoelectric structures. Smart Mat Struct 12:171–180

    Article  Google Scholar 

  60. Liu G (2009) Meshfree methods: moving beyond the finite element method. Taylor and Francis/CRC Press, Boca Raton

    Book  Google Scholar 

  61. Liu G, Jiang Y, Chen L, Zhang G, Zhang Y (2011) A singular cell-based smoothed radial point interpolation method for fracture problems. Comput Struct 89:1378–1396

    Article  Google Scholar 

  62. Liu G, Dai K, Lim K, Gu Y (2002) A point interpolation meshfree method for static and frequency analysis of two-dimensional piezoelectric structures. Comput Mech 29:510–519

    Article  MATH  Google Scholar 

  63. Dehghan M, Ghesmati A (2010) Numerical simulation of two-dimensional sine-gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput Phy Commun 181:772–786

    Article  MathSciNet  MATH  Google Scholar 

  64. Liu G, Gu Y (2001) A local radial point interpolation method (LRPIM) for free vibration analysis of 2-\(d\) solids. J Sound Vib 246:29–46

    Article  Google Scholar 

  65. Gu Y, Liu G (2002) A boundary radial point interpolation method (BRPIM) for 2-\(d\) structural analyses. Struct Eng Mech 15:535–550

    Article  Google Scholar 

  66. Krige D (1976) A review of the development of geostatistics in south africa. In: David M, huijbregts C (eds), Advanced Geostatistics in the Mining Industry, Holland (1976) 279–293

  67. Gu L (2003) Moving Kriging interpolation and element-free Galerkin method. Int J Numer Methods Eng 56:1–11

    Article  MATH  Google Scholar 

  68. Chen L, Liew KM (2011) A local Petrov-Galerkin approach with moving Kriging interpolation for solving transient heat conduction problems. Comput Mech 47:455–467

    Article  MathSciNet  MATH  Google Scholar 

  69. Dai KY, Liu GR, Lim KM, Gu YT (2003) Comparison between the radial point interpolation and the Kriging interpolation used in meshfree methods. Comput Mech 32:60–70

    Article  MATH  Google Scholar 

  70. Bui TQ, Nguyen MN (2011) A moving Kriging interpolation-based meshfree method for free vibration analysis of Kirchhoff plates. Comput Struct 89:380–394

    Article  Google Scholar 

  71. Khattak AJ, Tirmizi SIA, Islam SU (2009) Application of meshfree collocation method to a class of nonlinear partial differential equations. Eng Anal Bound Elem 33:661–667

    Article  MathSciNet  MATH  Google Scholar 

  72. Dehghan M, Shokri A (2009) A meshless method for numerical solution of the one-dimensional wave equation with an integral condition using radial basis functions. Numer Algorithms 52:461–477

    Article  MathSciNet  MATH  Google Scholar 

  73. Fornberg B, Flyer N, Russell JM (2010) Comparisons between pseudospectral and radial basis function derivative approximations. IMA J Numer Anal 30:149–172

    Article  MathSciNet  MATH  Google Scholar 

  74. Fornberg B, Dirscol T, Wright G, Charles R (2002) Observations on the behavior of radial basis function approximations near boundaries. Comput Math Appl 43:473–490

    Article  MathSciNet  MATH  Google Scholar 

  75. Ballestra LV, Pacelli G (2013) Pricing European and American options with two stochastic factors: A highly efficient radial basis function approach. J Econ Dyn Cont 37:1142–1167

    Article  MathSciNet  Google Scholar 

  76. Ballestra LV, Pacelli G (2012) A radial basis function approach to compute the first-passage probability density function in two-dimensional jump-diffusion models for financial and other applications. Eng Anal Bound Elem 36:1546–1554

    Article  MathSciNet  MATH  Google Scholar 

  77. Ballestra LV, Pacelli G (2011) Computing the survival probability density function in jump-diffusion models: a new approach based on radial basis functions. Eng Anal Bound Elem 35:1075–1084

    Article  MathSciNet  MATH  Google Scholar 

  78. Franke C, Schaback R (1998) Solving partial differential equations by collocation using radial basis functions. Appl Math Comput 93:73–82

    MathSciNet  MATH  Google Scholar 

  79. Huang CS, Lee CF, Cheng AHD (2010) On the increasingly flat radial basis function and optimal shape parameter for the solution of elliptic PDEs. Eng Anal Bound Elem 34:802–809

    Article  MathSciNet  MATH  Google Scholar 

  80. Huang CS, Yen HD, Cheng AHD (2007) Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method. Eng Anal Bound Elem 31:614–623

    Article  MATH  Google Scholar 

  81. Broyden C (1970) The convergence of a class of double-rank minimization algorithms. IMA J Appl Math 6:76–90

    Article  MathSciNet  MATH  Google Scholar 

  82. Dennis J, Schnabel R (1996) Numerical methods for unconstrained optimization, SIAM

  83. Nocedal J, Wright S (1999) Numerical optimization, Springer

  84. Sherman J, Morrison W (1949) Adjustment of an inverse matrix corresponding to changes in the elements of a given column or a given row of the original matrix. Ann Math Statis 20:620–624

    Article  Google Scholar 

  85. Dehghan M, Yousefi S, Rashedi K. Ritz-Galerkin method for solving an inverse heat conduction problem with a nonlinear source term via bernstein multi-scaling functions and cubic B-spline functions. Inverse Probl Sci Eng (In press)

  86. Murio D (1992) Solution of inverse heat conduction problems with phase changes by the mollification method. Comput Math Appl 24:45–57

    Article  MathSciNet  MATH  Google Scholar 

  87. Slodicka M, Lesnic D, Onyango T (2010) Determination of a time-dependent heat transfer coefficient in a nonlinear inverse heat conduction problem. Inverse Probl Sci Eng 18:65–81

    Article  MathSciNet  MATH  Google Scholar 

  88. Wang Y, Yagola AG, Yang C (2010) Optimization and regularization for computational inverse problems and applications. Higher Education Press, Beijing

    MATH  Google Scholar 

  89. Galperin EA, Zheng Q (1993) Solution and control of PDE via global optimization methods. Comput Math Appl 25:103–118

    Article  MathSciNet  MATH  Google Scholar 

  90. Galperin EA, Kansa EJ (2002) Application of global optimization and radial basis functions to numerical solutions of weakly singular volterra integral equations. Comput Math Appl 43:491–499

    Article  MathSciNet  MATH  Google Scholar 

  91. Kansa EJ, Ling L (2014) Collocation and optimization initialization. WIT Press, Boundary Elements and Other Mesh Reduction Methods XXXVII

    Book  MATH  Google Scholar 

  92. Kansa EJ (2015) Radial basis functions: achievements and challenges. WIT Press, Boundary Elements and Other Mesh Reduction Methods XXXVIII

    MATH  Google Scholar 

  93. Kansa EJ (2012) Strong form collocation input for optimization. WIT Press, Boundary Elements and Other Mesh Reduction Methods XVII

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank anonymous reviewers for their careful reading of this manuscript and constructive comments which have helped improve the quality of the paper. The first author’s work was supported by a Grant No. 94028928 sponsored by the Iran National Science Foundation (INSF). He sincerely thanks to INSF for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamal Amani Rad.

An iterative scheme based on the Galperin-Zheng minimization for solving the inverse Cauchy-Stefan problem

An iterative scheme based on the Galperin-Zheng minimization for solving the inverse Cauchy-Stefan problem

First of all, consider the set of free parameters \(\mathbf {Q}=\{\mathbf {X},\mathbf {Y},u_j,\epsilon _j\}\) with the fixed values \(0<\eta ,\{\omega _i\}_{i=1}^3<1,~\sum _{i=1}^3\omega _i=1\), where \(\mathbf {X},\mathbf {Y}\) are the center and collocation points belong to \(\Omega \). Also, \(u_j\)’s are the approximation coefficients introduced in equation (2.13) and \(\epsilon _j\)’s are the fuzzy shape parameters generated by using the formula

$$\begin{aligned} \epsilon _j=\epsilon _{\min }^2\big (\frac{\epsilon _{\max }}{\epsilon _{\min }}\big )^{\frac{2(j-1)}{N-1}},\quad j=\overline{1,N}. \end{aligned}$$
(6.1)

The space-time RBF’s find the fuzzy form:

$$\begin{aligned} R_j(x,t)=(1-e^{-\epsilon _j^2(x-x_j)^2})(1-e^{-\epsilon _j^2(t-t_j)^2}),\quad j=\overline{1,N}. \end{aligned}$$
(6.2)

Second, based on the Galperin-Zheng minimization technique [8993], define

$$\begin{aligned} \mathbf {L}_{\infty }^{weak}=\min _{Q} \mathcal{F}=\omega _1|a.u|+\omega _2|b.u-\beta |+\omega _3|b^{'}u-\gamma |, \end{aligned}$$
(6.3)

where

$$\begin{aligned} a.u= & {} \sum _{k=1}^na_ku_k,\quad a_k=\sum _{i=0}^nG_{i+1,k+1}^{-1}A_i+\alpha G_{n+4,k+1}^{-1},\\ b.u= & {} \sum _{k=1}^nb_ku_k,\quad a_k=\sum _{i=0}^nG_{i+1,k+1}^{-1}B_i+\sum _{j=0}^m G_{n+j+2,k+1}^{-1}C_j,\\ b^{'}.u= & {} \sum _{k=1}^nb_k^{'}u_k,\quad a_k=\sum _{i=0}^nG_{i+1,k+1}^{-1}B_i^{'}+\sum _{j=0}^m G_{n+j+2,k+1}^{-1}C_j^{'},\\ A_i= & {} \int \limits _0^T\int \limits _0^{s(t)}\{\frac{\partial R_i(x,t)}{\partial t}-\frac{\partial ^2 R_i(x,t)}{\partial x^2}\}dxdt,\\= & {} \int \limits _0^T\Bigg [s(t)-\frac{\sqrt{\pi }}{2\epsilon } \mathrm {erf}(\epsilon _i(s(t)-x_i))+\frac{\sqrt{\pi }}{2\epsilon } \mathrm {erf}(-\epsilon _ix_i)\Bigg ]\Bigg [2\epsilon _i^2(t-t_i)e^{-\epsilon _i^2(t-t_i)^2}\Bigg ]dt,\\ B_i= & {} \int \limits _0^TR_i(s(t),t)dt,\quad B_i^{'}=-\int \limits _0^T\frac{\partial R_i(s(t),t)}{\partial x}dt,\\ \alpha= & {} \int \limits _0^Ts(t)dt,\quad \beta =\int \limits _0^TA(t)dt,\quad \gamma =\int \limits _0^TB(t)dt,\\ C_j= & {} \int \limits _0^TP_j(s(t),t)dt= {\left\{ \begin{array}{ll} T,&{}j=0,\\ \alpha ,&{}j=1,\\ 1/2T^2,&{}j=2, \end{array}\right. } \\&~C_j^{'}=-\int \limits _0^T\frac{\partial P_j(s(t),t)}{\partial x}dt {\left\{ \begin{array}{ll} 0,&{}j=0,\\ -T,&{}j=1,\\ 0,&{}j=2, \end{array}\right. } \end{aligned}$$

and take

$$\begin{aligned} \mathbf {L}_{\infty }^{strong}=|\widehat{u}(x,t)-u_{exact}(x,t)|, \end{aligned}$$
(6.4)

where \(u_{exact}(x,t),\widehat{u}(x,t)\) are the exact and approximate solutions for the problem obtained in Sect. 3. Finally, refer to the relations 6.3 and 6.4 as the weak and strong formulations, respectively. Now, we deal with the following steps to get the satisfactory results:

Step 1: Take the minimum number of center and collocation points \(\{\mathbf {X},\mathbf {Y}\}\), use the fuzzy RBF’s \(R_i(x,t)\) and solve the problem by employing the procedure given in section 3.

Step2: Insert the obtained \(u_j\)’s and apply them in the weak formulation 6.3.

Step 3: Report the value \(\mathbf {L}_{\infty }^{weak}\) and stop the procedure if

$$\begin{aligned} \mathbf {L}_{\infty }^{weak}\le \eta . \end{aligned}$$
(6.5)

Otherwise, update the number of center and collocation points \(\{\mathbf {X},\mathbf {Y}\}\), repeat the Step 1 and Step 2 until the inequality 6.5 is satisfied.

We implement the described technique and resolve the Example 1. The results are given in Table 3 show the applicability of the technique. It is worth mentioning that here we set \(\omega _1=\omega _2=\omega _3=\frac{1}{3},~\eta =10^{-6}\) and utilize the numerical integration technique, namely, Gauss-Legendre with 40 nodes in the computations. It is seen that we obtain the acceptable results by taking the center points \(Card(\mathbf X )=Card(\mathbf Y )\ge 50\).

Table 3 RMS errors of the Galperin-Zheng formulation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rad, J.A., Rashedi, K., Parand, K. et al. The meshfree strong form methods for solving one dimensional inverse Cauchy-Stefan problem. Engineering with Computers 33, 547–571 (2017). https://doi.org/10.1007/s00366-016-0489-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-016-0489-3

Keywords

Navigation