Skip to main content
Log in

Multi-material proportional topology optimization based on the modified interpolation scheme

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

A multi-material proportional topology optimization (PTO) method based on the modified material interpolation scheme is proposed in this work. PTO method is a highly heuristic algorithm by which satisfactory results are obtained. When the proposed method is used to solve the minimum compliance problem, the design variables are assigned to elements proportionally by the value of compliance during the optimization process. It is worth mentioning that PTO algorithm does not incorporate sensitivities. Accordingly, there is nothing about sensitivity calculation but just a weighted density used as filtering in the proposed method. Hence, non-sensitivity is also one of the salient features of this method. According to the characteristics, a density interpolation approach based on the logistic function is introduced in the present study. This approach cannot only establish the relationship between the material densities and Young’s modulus more reasonably, but also effectively realize the polarization of the intermediate-density elements. The complication associated with sensitivities can be avoided by the complicated interpolation scheme in conjunction with PTO algorithm. The multi-material interpolation scheme is modified from the extended SIMP interpolation approach in three-phase topology optimization. A density-filter-based Heaviside threshold function combined with the modified interpolation is introduced in this work to obtain clear 0/1 optimal topology design. The effectiveness and feasibility of the proposed method are demonstrated by several typical numerical examples of multi-material topology optimization, in which the optimal design with distinct boundaries can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  2. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202

    Article  Google Scholar 

  3. Andreassen E, Clausen A, Schevenels M, Lazarov B, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43(1):1–16

    Article  MATH  Google Scholar 

  4. Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246

    Article  MathSciNet  MATH  Google Scholar 

  5. Allaire G, Gournay FD, Jouve F, Toader AM (2005) Structural optimization using topological and shape sensitivity via a level set method. Control Cybernet 34(1):59–80

    MathSciNet  MATH  Google Scholar 

  6. Luo Z, Tong LY, Kang Z (2009) A level set method for structural shape and topology optimization using radial basis functions. Comput Struct 87(7–8):425–434

    Article  Google Scholar 

  7. Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9):635–654

    MATH  Google Scholar 

  8. Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4):401–424

    Article  Google Scholar 

  9. Tavakoli R (2014) Multimaterial topology optimization by volume constrained Allen–Cahn system and regularized projected steepest descent method. Comput Methods Appl Mech Eng 276:534–565

    Article  MathSciNet  Google Scholar 

  10. Fuchs MB, Jiny S, Peleg N (2005) The SRV constraint for 0/1 topological design. Struct Multidiscip Optim 30(4):320–326

    Article  Google Scholar 

  11. Du YX, Yan SQ, Zhang Y, Xie HH, Tian QH (2015) A modified interpolation approach for topology optimization. Acta Mech Solida Sin 28(4):420–430

    Article  Google Scholar 

  12. Svanberg K, Werme M (2007) Sequential integer programming methods for stress constrained topology optimization. Struct Multidiscip Optim 34:277–299

    Article  MathSciNet  MATH  Google Scholar 

  13. Munk DJ, Vio GA, Steven GP (2015) Topology and shape optimization methods using evolutionary algorithms: a review. Struct Multidiscip Optim 52:613–631

    Article  MathSciNet  Google Scholar 

  14. Tai K, Akhtar S (2005) Structural topology optimization using a genetic algorithm with a morphological geometric representation scheme. Struct Multidiscip Optim 30:113–127

    Article  Google Scholar 

  15. Prager W (1968) Optimality criteria in structural design. Proc Natl Acad Sci USA 61(3):794–796

    Article  Google Scholar 

  16. Rozvany GIN. (1988) Optimality criteria and layout theory in structural design: recent developments and applications. In: Rozvany GIN, Karihaloo BL (eds) Structural optimization. Springer, Dordrecht

    Chapter  Google Scholar 

  17. Rozvany GIN, Zhou M, Rotthaus M, Gollub W, Spengemann F (1989) Continuum-type optimality criteria methods for large finite element systems with a displacement constraint-Part I. Struct Optim 1(1):47–72

    Article  Google Scholar 

  18. Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21(2):120–127

    Article  Google Scholar 

  19. Gill PE, Murray W, Saunders MA (2002) SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM J Optim 12(4):979–1006

    Article  MathSciNet  MATH  Google Scholar 

  20. Fleury C, Braibant V (1986) Structural optimization: A new dual method using mixed variables. Int J Numer Methods Eng 23(3):409–428

    Article  MathSciNet  MATH  Google Scholar 

  21. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  22. Biyikli E, To AC (2015) Proportional topology optimization: a new non-sensitivity method for solving stress constrained and minimum compliance problems and its implementation in MATLAB. PLoS One 10(12):1–23

    Article  Google Scholar 

  23. Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067

    Article  MathSciNet  Google Scholar 

  24. Hvejsel CF, Lund E (2011) Material interpolation schemes for unified topology and multi-material optimization. Struct Multidiscip Optim 43(6):811–825

    Article  MATH  Google Scholar 

  25. Yin L, Ananthasuresh GK (2001) Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme. Struct Multidiscip Optim 23(1):49–62

    Article  Google Scholar 

  26. Tavakoli R, Mohseni SM (2014) Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line MATLAB implementation. Struct Multidiscip Optim 49(4):621–642

    Article  MathSciNet  Google Scholar 

  27. Huang X, Xie YM (2009) Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Computat Mech 43:393–401

    Article  MathSciNet  MATH  Google Scholar 

  28. Gao T, Zhang WH (2011) A mass constraint formulation for structural topology optimization with multiphase materials. Int J Numer Methods Eng 88(8):774–796

    Article  MATH  Google Scholar 

  29. Wang MY, Zhou S (2004) Synthesis of shape and topology of multi-material structures with a phase-field method. J Comput Aided Mater Des 11(2–3):117–138

    Article  Google Scholar 

  30. Zhou S, Wang MY (2007) Multimaterial structural topology optimization with a generalized Cahn–Hilliard model of multiphase transition. Struct Multidiscip Optim 33(2):89–111

    Article  MathSciNet  MATH  Google Scholar 

  31. Díaz A, Sigmund O (1995) Checkerboard patterns in layout optimization. Struct Optim 10(1):40–45

    Article  Google Scholar 

  32. Jog CS, Haber RB (1996) Stability of finite element models for distributed-parameter optimization and topology design. Comput Methods Appl Mech Eng 130(3–4):203–226

    Article  MathSciNet  MATH  Google Scholar 

  33. Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459

    Article  MATH  Google Scholar 

  34. Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158

    Article  MathSciNet  MATH  Google Scholar 

  35. Guest JK, Prevost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254

    Article  MathSciNet  MATH  Google Scholar 

  36. Xu S, Cai Y, Cheng G (2010) Volume preserving nonlinear density filter based on heaviside functions. Struct Multidiscip Optim 41(4):495–505

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang FW, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Project of China Scholarship Council (201506965015). The authors are also grateful to the anonymous reviewers for their valuable suggestions for improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingtao Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, M., Zhang, Y., Yang, X. et al. Multi-material proportional topology optimization based on the modified interpolation scheme. Engineering with Computers 34, 287–305 (2018). https://doi.org/10.1007/s00366-017-0540-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-017-0540-z

Keywords

Navigation