Skip to main content
Log in

A haar wavelet approximation for two-dimensional time fractional reaction–subdiffusion equation

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this study, we established a wavelet method, based on Haar wavelets and finite difference scheme for two-dimensional time fractional reaction–subdiffusion equation. First by a finite difference approach, time fractional derivative which is defined in Riemann–Liouville sense is discretized. After time discretization, spatial variables are expanded to truncated Haar wavelet series, by doing so a fully discrete scheme obtained whose solution gives wavelet coefficients in wavelet series. Using these wavelet coefficients approximate solution constructed consecutively. Feasibility and accuracy of the proposed method is shown on three test problems by measuring error in \(L_{\infty }\) norm. Further performance of the method is compared with other methods available in literature such as meshless-based methods and compact alternating direction implicit methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam

    MATH  Google Scholar 

  2. Ray SS (2007) Exact solutions for time-fractional diffusion-wave equations by decomposition method. Phys Scr 75:53–61

    Article  MathSciNet  MATH  Google Scholar 

  3. Saadatmandi A, Dehghan M, Azizi MR (2012) The Sinc–Legendre collocation method for a class of fractional convection diffusion equation with variable coefficients. Commun Nonlinear Sci Numer Simul 17(11):4125–4136

    Article  MathSciNet  MATH  Google Scholar 

  4. Saadatmandi A, Dehghan M (2010) A new operational matrix for solving fractional-order differential equations. Comput Math Appl 59(3):1326–1336

    Article  MathSciNet  MATH  Google Scholar 

  5. Dehghan M, Manafian J, Saadatmandi A (2010) Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer Methods Partial Differ Equ 26(2):448–479

    MathSciNet  MATH  Google Scholar 

  6. Yousefi SA, Lotfi A, Dehghan M (2011) The use of Legendre multiwavelet collocation method for solving the fractional optimal control problems. J Vib Control 17(13):2059–2065

    Article  MathSciNet  MATH  Google Scholar 

  7. Agrawal OP (2002) Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dyn 29:145–155

    Article  MathSciNet  MATH  Google Scholar 

  8. Esen A, Ucar Y, Yagmurlu N, Tasbozan O (2013) A Galerkin finite element method to solve fractional diffusion and fractional diffusion-wave equations. Math Model Anal 18:260–273

    Article  MathSciNet  MATH  Google Scholar 

  9. Mohebbi A, Mostafa A, Dehghan M (2013) The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics. Eng Anal Bound Elem 37:475–485

    Article  MathSciNet  MATH  Google Scholar 

  10. Hosseini VR, Chen W, Avazzade Z (2014) Numerical solution of fractional telegraph equation by using radial basis functions. Eng Anal Bound Elem 38:31–39

    Article  MathSciNet  Google Scholar 

  11. Wei L, Dai H, Zhang D, Si Z (2014) Fully discrete local discontinuous Galerkin method for solving the fractional telegraph equation. Calcolo 51:175–192

    Article  MathSciNet  MATH  Google Scholar 

  12. Meerschaert MM, Scheffler HP, Tadjeran C (2006) Finite difference methods for two-dimensional fractional dispersion equation. J Comput Phys 211(1):249–261

    Article  MathSciNet  MATH  Google Scholar 

  13. Tadjeran C, Meerschaert MM (2007) A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J Comput Phys 220(2):813–823

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhuang P, Liu F (2007) Finite difference approximation for two-dimensional time fractional diffusion equation. J Algorithms Comput Technol 1(1):1–15

    Article  Google Scholar 

  15. Chen S, Liu F (2008) ADI-Euler and extrapolation methods for the two-dimensional fractional advection dispersion equation. J Appl Math Comput 26(1–2):295–311

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen CM, Liu F, Turner I, Anh V (2010) Numerical schemes and multivariate extrapolation of a two dimensional anomalous sub-diffusion equation. Numer Algorithms 54(1):1–21

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen CM, Liu F, Anh V, Turner I (2011) Numerical methods for solving a two-dimensional variable order anomalous subdiffusion equation. Math Comput 81(277):345–366

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang YN, Sun ZZ, Zhao X (2012) Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation. SIAM J Numer Anal 50(3):1535–1555

    Article  MathSciNet  MATH  Google Scholar 

  19. Cui MR (2013) Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation. Numer Algorithms 62(3):383–409

    Article  MathSciNet  MATH  Google Scholar 

  20. Zeng F, Liu F, Li CP, Burrage K, Turner I, Anh V (2014) A Crank–Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction–diffusion equation. SIAM J Numer Anal 52:2599–2622

    Article  MathSciNet  MATH  Google Scholar 

  21. Abbaszadeh M, Dehghan M (2015) A meshless numerical procedure for solving fractional reaction subdiffusion model via a new combination of alternating direction implicit (ADI) approach and interpolating element free Galerkin (EFG) method. Comput Math Appl 70:2493–2512

    Article  MathSciNet  Google Scholar 

  22. Dehghan M, Abbaszadeh M, Mohebbi A (2015) Error estimate for the numerical solution of fractional reaction–subdiffusion process based on a meshless method. J Comput Appl Math 280:14–36

    Article  MathSciNet  MATH  Google Scholar 

  23. Yu B, Jiang X, Xu H (2015) A novel compact numerical method for solving the two-dimensional non-linear fractional reaction–subdiffusion equation. Numer Algorithms 68:923–950

    Article  MathSciNet  MATH  Google Scholar 

  24. Lepik U (2007) Application of the Haar wavelet transform to solving integral and differential equations. Proc Estonian Acad Sci Phys Math 56:28–46

    MathSciNet  MATH  Google Scholar 

  25. Chen C, Hsiao CH (1997) Haar wavelet method for solving lumped and distributed parameter systems. IEE Proc Control Theory Appl 144:87–94

    Article  MATH  Google Scholar 

  26. Chen C, Hsiao CH (1997) Wavelet approach to optimising dynamic systems. IEE Proc Control Theory Appl 146:213–219

    Article  Google Scholar 

  27. Hsiao CH, Wang WJ (2000) State analysis of time-varying singular bilinear systems via Haar wavelets. Math Comput Simul 52:11–20

    Article  MathSciNet  Google Scholar 

  28. Hsiao CH, Wang WJ (1999) State analysis of time-varying singular nonlinear systems via Haar wavelets. Math Comput Simul 51:91–100

    Article  MathSciNet  Google Scholar 

  29. Hsiao CH, Wang WJ (2001) Haar wavelet approach to nonlinear stiff systems. Math Comput Simul 57:347–353

    Article  MathSciNet  MATH  Google Scholar 

  30. Hsiao CH (2004) Haar wavelet direct method for solving variational problems. Math Comput Simul 64:569–585

    Article  MathSciNet  MATH  Google Scholar 

  31. Lepik U (2005) Numerical solution of differential equations using Haar wavelets. Math Comput Simul 68:127–143

    Article  MathSciNet  MATH  Google Scholar 

  32. Lepik U (2007) Numerical solution of evolution equations by the Haar wavelet method. Appl Math Comput 185:695–704

    MathSciNet  MATH  Google Scholar 

  33. Lepik U (2011) Solving PDEs with the aid of two-dimensional Haar wavelets. Comput Math Appl 61:1873–1879

    Article  MathSciNet  MATH  Google Scholar 

  34. Jiwari R (2012) A Haar wavelet quasilinearization approach for numerical simulation of Burgers’ equation. Comput Phys Commun 183:2413–2423

    Article  MathSciNet  MATH  Google Scholar 

  35. Jiwari R (2015) A hybrid numerical scheme for the numerical solution of the Burgers’ equation. Comput Phys Commun 188:59–67

    Article  MathSciNet  MATH  Google Scholar 

  36. Oruç Ö, Bulut F, Esen A (2015) A Haar wavelet-finite difference hybrid method for the numerical solution of the modified Burgers’ equation. J Math Chem. https://doi.org/10.1007/s10910-015-0507-5

    Article  MathSciNet  MATH  Google Scholar 

  37. Aziz I, Siraj-ul-Islam, Šarler B (2013) Wavelet collocation methods for the numerical solution of elliptic BV problems. Appl Math Model 37(3):676–694

    Article  MathSciNet  MATH  Google Scholar 

  38. Kumar M, Pandit S (2014) A composite numerical scheme for the numerical simulation of coupled Burgers’ equation. Comput Phys Commu 185(3):809–817

    Article  MathSciNet  MATH  Google Scholar 

  39. Mittal RC, Kaur H, Mishra V (2014) Haar wavelet-based numerical investigation of coupled viscous Burgers’ equation. Int J Comput Math. https://doi.org/10.1080/00207160.2014.957688

    Article  MATH  Google Scholar 

  40. Kaur H, Mittal RC, Mishra V (2013) Haar wavelet approximate solutions for the generalized Lane–Emden equations arising in astrophysics. Comput Phys Commun 184:2169–2177

    Article  MathSciNet  MATH  Google Scholar 

  41. Pandit S, Kumar M, Tiwari S (2015) Numerical simulation of second-order hyperbolic telegraph type equations with variable coefficients. Comput Phys Commun 187:83–90

    Article  MathSciNet  MATH  Google Scholar 

  42. Oruç Ö, Bulut F, Esen A (2016) Numerical solutions of regularized long wave equation by Haar wavelet method. Mediterr J Math 13(5):3235–3253

    Article  MathSciNet  MATH  Google Scholar 

  43. Oruç Ö, Bulut F, Esen A (2015) A Haar wavelet-finite difference hybrid method for the numerical solution of the modified Burgers’ equation. J Math Chem 53(7):1592–1607

    Article  MathSciNet  MATH  Google Scholar 

  44. Oruç Ö, Esen A, Bulut F (2016) A Haar wavelet collocation method for coupled nonlinear Schrödinger–KdV equations. Int J Mod Phys C 27(9):1650103. https://doi.org/10.1142/S0129183116501035

    Article  Google Scholar 

  45. Bulut F, Oruç Ö, Esen A (2015) Numerical solutions of fractional system of partial differential equations by Haar wavelets. Comput Model Eng Sci 108(4):263–284

    Google Scholar 

  46. Esen A, Bulut F, Oruç Ö (2016) A unified approach for the numerical solution of time fractional Burgers’ type equations. Eur Phys J Plus 131:116. https://doi.org/10.1140/epjp/i2016-16116-5

    Article  Google Scholar 

  47. Lepik Ü (2009) Solving fractional integral equations by the Haar wavelet method. Appl Math Comput 214:468–478

    MathSciNet  MATH  Google Scholar 

  48. Wu JL (2009) A wavelet operational method for solving fractional partial differential equations numerically. Appl Math Comput 214:31–40

    MathSciNet  MATH  Google Scholar 

  49. Li Y, Zhao W (2010) Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. Appl Math Comput 216:2276–2285

    MathSciNet  MATH  Google Scholar 

  50. Rehman M, Ali Khan R (2013) Numerical solutions to initial and boundary value problems for linear fractional partial differential equations. Appl Math Model 37:5233–5244

    Article  MathSciNet  MATH  Google Scholar 

  51. Ray SS, Patra A (2013) Haar wavelet operational methods for the numerical solutions of fractional order nonlinear oscillatory Van der Pol system. Appl Math Comput 220:659–667

    MathSciNet  MATH  Google Scholar 

  52. Saeed U, Rehman M (2013) Haar wavelet-quasilinearization technique for fractional nonlinear differential equations. Appl Math Comput 220:630–648

    MathSciNet  MATH  Google Scholar 

  53. Wang L, Ma Y, Meng Z (2014) Haar wavelet method for solving fractional partial differential equations numerically. Appl Math Comput 227:66–76

    MathSciNet  MATH  Google Scholar 

  54. Yi M, Huang J (2014) Wavelet operational matrix method for solving fractional differential equations with variable coefficients. Appl Math Comput 230:383–394

    MathSciNet  MATH  Google Scholar 

  55. Shi Z, Cao Y, Chen QJ (2012) Solving 2D and 3D Poisson equations and biharmonic equations by the Haar wavelet method. Appl Math Model 36:5143–5161

    Article  MathSciNet  MATH  Google Scholar 

  56. Islam S, Aziz I, Ahmad M (2015) Numerical solution of two-dimensional elliptic PDEs with nonlocal boundary conditions. Comput Math Appl 69:180–205

    Article  MathSciNet  MATH  Google Scholar 

  57. Aziz I, Siraj-ul-Islam (2013) New algorithms for numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets. J Comput Appl Math 239:333–345

    Article  MathSciNet  MATH  Google Scholar 

  58. Aziz I, Siraj-ul-Islam, Khan F (2014) A new method based on Haar wavelet for the numerical solution of two-dimensional nonlinear integral equations. J Comput Appl Math 272:70–80

    Article  MathSciNet  MATH  Google Scholar 

  59. Siraj-ul-Islam, Aziz I, Fayyaz M (2013) A new approach for numerical solution of integro-differential equations via Haar wavelets. Int J Comput Math 90:1971–1989

    Article  MathSciNet  MATH  Google Scholar 

  60. Siraj-ul-Islam, Aziz I, Al-Fhaid AS (2014) An improved method based on Haar wavelets for numerical solution of nonlinear integral and integro-differential equations of first and higher orders. J Comput Appl Math 260:449–469

    Article  MathSciNet  MATH  Google Scholar 

  61. Celik I (2013) Haar wavelet approximation for magnetohydrodynamic flow equations. Appl Math Model 37:3894–3902

    Article  MathSciNet  MATH  Google Scholar 

  62. Shi Z, Yan-Hua X, Jun-ping Z (2016) Haar wavelets method for solving Poisson equations with jump conditions in irregular domain. Adv Comput Math. https://doi.org/10.1007/s10444-015-9450-z

    Article  MathSciNet  MATH  Google Scholar 

  63. Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives—theory and applications. Gordon and Breach Science Publishers, Philadelphia

    MATH  Google Scholar 

  64. Zhuang P, Liu F, Anh V, Turner I (2005) Stability and convergence of an implicit numerical method for the nonlinear fractional reaction–subdiffusion process. IMA J Appl Math 74:1–22

    MATH  Google Scholar 

  65. Mohammadi F (2015) Haar wavelets approach for solving multidimensional stochastic Itô–Volterra integral equations. Appl Math E Notes 15:80–96

    MathSciNet  MATH  Google Scholar 

  66. Oliphant TE (2007) Python for scientific computing. Comput Sci Eng 9(3):10–20

    Article  Google Scholar 

  67. van der Walt S, Colbert SC, Varoquaux G (2011) The NumPy array: a structure for efficient numerical computation. Comput Sci Eng 13(2):22–30

    Article  Google Scholar 

  68. Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9(3):90–95

    Article  Google Scholar 

  69. Zhang YN, Sun ZZ (2014) Error analysis of a compact ADI scheme for the 2D fractional subdiffusion equation. J Sci Comput 59:104–128

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Bulut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oruç, Ö., Esen, A. & Bulut, F. A haar wavelet approximation for two-dimensional time fractional reaction–subdiffusion equation. Engineering with Computers 35, 75–86 (2019). https://doi.org/10.1007/s00366-018-0584-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-018-0584-8

Keywords

Mathematics Subject Classification