Abstract
Due to several challenges such as faster development cycles or growing customer demands, the engineering of machines and plants is becoming increasingly complex. Methods such as model-based development and virtual commissioning (i.e. an early commissioning of plant control by means of virtual machine models) are known in theory, academia and industry. These methods can significantly contribute to face time, quality and cost challenges within the development of machines and plants. However, the application and implementation of these methods and related tools are a major task. One challenge is the integration of several models in various description languages. In addition, the usage often fails because of a lack of willingness and knowledge. In addition, innovative methods also require new work- and data flows in the respective enterprises. Therefore, the challenge is to cope with historically grown structures. For this reason, this paper proposes an approach to address the challenge of introducing model-based development and virtual commissioning in enterprises in the field of machinery and plant engineering. After presenting a novel three-step methodology to introduce these methods, the theoretical implementation of virtual commissioning is described in detail. Afterwards, an industrial application example with explanation of the realization of virtual commissioning is presented and critically discussed. Finally, a summary with results and benefits and an insight to future research aspects with regard to the design of cyber-physical system and related topics is given.














Similar content being viewed by others
References
Garetti M, Taisc M (2012) Sustainable manufacturing: trends and research challenges. Prod Control 23:83–104
Afshar A, Kaveh A, Shoghli O (2007) Multi-objective optimization of time-cost-quality using multi-colony ant algorithm. Asian J Civil Eng (Build Hous) 2:113–124
Gausemeier J, Dumitrescu R, Steffen D (2013) Systems engineering in der industriellen Praxis. Study by the Heinz-Nixdorf-Institut and the Fraunhofer IPT—Projektgruppe Entwurfstechnik Mechatronik, Paderbron
Dohmen W (2002) Interdisziplinäre Methoden für die integrierte Entwicklung komplexer mechatronischer Systeme. Dissertation, TU München
Diehl H (2009) Systemorientierte Visualisierung disziplinübergreifender Entwicklungsabhängigkeiten mechatronischer Automobilsysteme. Dissertation, TU München
Hehenberger P (2011) Computergestützte Fertigung. Springer, Heidelberg
Qamar A, Wikander J, During C (2015) Managing dependencies in mechatronic design: a case study on dependency management between mechanical design and system design. Eng Comput 31:631–646. https://doi.org/10.1007/s00366-014-0366-x
Van der Auweraer H, Anthonis J, De Bruyne S, Leuridan J (2013) Virtual engineering at work: the challenges for designing mechatronic products. Eng Comput 29:389. https://doi.org/10.1007/s00366-012-0286-6
Eigner M (2014) Modellbasierte Virtuelle Produktentwicklung auf einer Plattform für System Lifecycle Management. In: Eigner M et al (ed) Industrie 4.0—Beherrschung der industriellen Komplexität mit SysLM, Springer, Berlin, pp 91–110
Wünsch G, Zäh M (2005) A new method for fast plant start-up. In: 1st international conference on changeable, agile, reconfigurable and virtual production (CARV 05), Garching, Germany
Scheifele S, Verl A (2016) Automated control system generation out of the virtual machine. In: 3rd international conference on system-integrated intelligence: new challenges for product and production engineering (SysInt 2016)
Puntel-Schmidt P, Fay A (2015) Applying the domain-mapping-matrix to identify the appropriate level of detail of simulation models for virtual commissioning. IFAC-PapersOnLine 48(10):69–74
Puntel-Schmidt P, Fay A (2015) Potential of dynamically adaptable simulation models for virtual commissioning. In: Simulation notes Europe SNE, vol 15, no 2, pp 59–68
Puntel-Schmidt P, Fay A (2015) Levels of detail and appropriate model types for virtual commissioning in manufacturing engineering. In: 8th Vienna International Conference on Mathematical Modelling, Vienna, Austria
Schneider M, Gausemeier J, Schmüdderrich T, Trächtler A (2014) Approach for scenario-based test specification for virtual commissioning. In: International design conference (Design 2014), Dubrovnik, Croatia
ICG-Capability s.r.o (2015) Integrated consulting group|capability. http://www.capability.cz/en/. Accessed 30 Sept 2015
Hehenberger P, Bradley D (2016) Mechatronic futures, challenges and solutions for mechatronic systems and their designers. Springer, London
Eigner M, Zafirov R, Baudisch T (2012) Information transfer from electrical design to simulation models in Modelica for virtual commissioning. In: NordDesign 2012, August 22–24, 2012 Aalborg, Denmark
Stahl T, Völter M (2006) Model-driven software development. Wiley, Chichester
Estefan J (2007) Survey of model-based systems engineering (MBSE) methodologies. INCOSE MBSE Focus Group 25
VDI-Guideline 2206 (2003) Entwicklungsmethodik für mechatronische Systeme. Verein Deutscher Ingenieure, Beuth, Berlin
Friedenthal S, Moore A, Steiner R (2015) A practical guide to SysML. Morgan Kaufmann, Waltham
Lerche M, Pesch D, Klemm P, Korajda I (2004) Baukastenbasiertes engineering mit Föderal. VDMA, Frankfurt am Main
Litto M et. al (2010) AQUIMO: Ein Leitfaden für Maschinen- und Anlagenbauer. VDMA, Frankfurt am Main
Gausemeier J, Frank U, Donoth J, Kahl S (2009) Specification technique for the description of self-optimizing mechatronic systems. Res Eng Des 20:201–223
Hackenberg G, Richter C, Zäh M (2014) A multi-disciplinary modelling technique for requirements management in mechatronic systems engineering. In: 2nd international conference on system-integrated intelligence: challenges for product and production engineering
Tschirner C, Dumitrscu R, Bansmann M, Gausemeier J (2015) Tailoring model-based systems engineering—concepts for industrial application. In: 9th annual IEEE international systems conference (SysCon), pp 69–76
Wünsch G (2007) Methoden für die virtuelle Inbetriebnahme automatisierter Produktionssysteme. Dissertation, TU München
Lacour F (2011) Modellbildung für die physikbasierte Virtuelle Inbetriebnahme materialflussintensiver Produktionsanlagen. Dissertation, TU München
Botaschanjan J, Hensel T, Hummel B, Lindworsky A, Zäh M, Reinhart G, Broy M (2010) AutoVIBN—Abschlussbericht. Technische Universität München, München
Ahmad A, Andersson K, Sellgren U, Khan S (2014) A stiffness modelling methodology for simulation-driven design of haptic devices. Eng Comput 30:125. https://doi.org/10.1007/s00366-012-0296-4
VDI-Guideline 3693 (2016) Virtuelle Inbetriebnahme—Modellarten und Glossar. Verein Deutscher Ingenieure, Beuth, Berlin
Boschert S, Rosen R (2016) Digital twin—the simulation aspect. In: Hehenberger P, Bradley D (eds) Mechatronic futures. Springer, London, pp 59–74
Rosen R, von Wichert G, Lo G, Bettenhausen K (2015) About the importance of autonomy and digital twins for the future of manufacturing. IFAC PapersOnLine 48(3):567–572
Hehenberger P, Vogel-Heuser B, Bradley D, Eynard B, Tomiyama T, Achiche S (2016) Design, modelling, simulation and integration of cyber physical systems: methods and applications. Comput Ind 82:273–289
Hehenberger P (2012) Advances in model-based mechatronic design. Trauner, Linz
Brökelmann J (2015) Systematik der virtuellen Inbetriebnahme von automatisierten Produktionssystemen. Verlagshaus Monsenstein und Vannerdat OHG Druck, Münster
Auinger F. Vorderwinkler M, Buchtela G (1999) Interface driven domain-independent modelling architecture for soft-commissioning and reality in the loop. In: Simulation conference, pp 798–805
Dominka S, Schiller F, Kain S (2007) Hybrid commissioning—from hardware-in-the-loop simulation to real producation plants. In: 18th IASTED international conference on modelling and simulation (MS’07), pp 544–549
Kain S, Dominka S, Merz M, Schiller F (2009) Reuse of HiL simulation models in the operation phase of production plants. In: IEEE international conference on industrial technology (ICIT ‘09), pp 1–6
Hensel T (2011) Modellbasierter Entwicklungsprozess für Automatisierungslösungen. Dissertation, TU München
Keller G, Nüttgens M, Scheer AW (1992) Semantische Prozessmodellierung auf der Grundlage ereignisgesteuerter Prozessketten (EPK). Saarbrücken, Germany
Allweyer T (2010) BPMN 2.0. Books on demand, Norderstedt
Ross DT (1977) Structured analysis (SA): a language for communicating ideas. IEEE Trans Softw Eng SE 3:16–34
Drescher B, Stich P, Kiefer J, Strahilov A, Bär T, Reinhart G (2013) Physikbasierte Simulation im Anlagenentstehungsprozess—Einsatzpotenziale bei der Entwicklung. Simulation in Produktion und Logistik
Carkenord BA (2009) Seven steps to mastering business analysis. J Ross Publishing, Fort Lauderdale
Drath R, Lüder A, Peschke J, Hundt L (2008) AutomationML—the glue for seamless automation engineering. In: IEEE international conference on emerging technologies and factory automation, Hamburg, Germany
Richter C, Ahrens M, Hehenberger P, Krotil S, Stich P, Reinhart G, Wiesinger A, Wimmer A (2016) Model based development and virtual commissioning in practice: a novel approach to establish innovative development methods in industrial environments. Tools and methods of competitive engineering (TMCE), in Imre Horváth, Jean-Philippe Pernot, Zoltan Rusák, ISBN: 978-94-6186-635-6
Cohn M (2010) Agile Softwareentwicklung: mit Scrum zum Erfolg. Addison Wesley, Boston
Hehenberger P, Bricogne M, Le Duigou J, Eynard B (2015) Meta-model of PLM for design of systems of systems. In: PLM international conference (PLM2015), Doha, Qatar
Lee EA (2008) Cyber physical systems: design challenges. In: 11th IEEE symposium on object oriented real-time distributed computing (ISORC)
Acknowledgements
We gratefully acknowledge that this work has been supported by the Austrian COMET-K2 programme of the Linz Center of Mechatronics (LCM), and was partly funded by the Austrian federal government and the federal state of Upper Austria. We also thank all partners for their kind support. The original version of this paper was published at the TMCE2016 in Aix-En-Provence (FR). This publication is a particular advanced republication and is arranged with the permission of the initial copyright owner.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ahrens, M., Richter, C., Hehenberger, P. et al. Novel approach to establish model-based development and virtual commissioning in practice. Engineering with Computers 35, 741–754 (2019). https://doi.org/10.1007/s00366-018-0622-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00366-018-0622-6