Skip to main content
Log in

The numerical solution of fractional differential equations using the Volterra integral equation method based on thin plate splines

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Finding the approximate solution of differential equations, including non-integer order derivatives, is one of the most important problems in numerical fractional calculus. The main idea of the current paper is to obtain a numerical scheme for solving fractional differential equations of the second order. To handle the method, we first convert these types of differential equations to linear fractional Volterra integral equations of the second kind. Afterward, the solutions of the mentioned Volterra integral equations are estimated using the discrete collocation method together with thin plate splines as a type of free-shape parameter radial basis functions. Since the scheme does not need any background meshes, it can be recognized as a meshless method. The proposed approach has a simple and computationally attractive algorithm. Error analysis is also studied for the presented method. Finally, the reliability and efficiency of the new technique are tested over several fractional differential equations and obtained results confirm the theoretical error estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Oldham KB, Spanier J (1974) The fractional calculus. Academic Press, New York

    MATH  Google Scholar 

  2. Mandelbrot B (1967) Some noises with 1/f spectrum, a bridge between direct current and white noise. IEEE Trans Inf Theory 13(2):289–298

    Article  MATH  Google Scholar 

  3. Rossikhin YA, Shitikova MV (1997) Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl Mech Rev 50:15–67

    Article  Google Scholar 

  4. Mainardi F (1997) Fractional calculus: some basic problems in continuum and statistical mechanics. In: Carpmten A, Mainardi F (eds) Fractals and fractional calculus in continuum mechanics, CISM Courses and Lectures. Springer, Vienna

  5. Baillie RT (1996) Long memory processes and fractional integration in econometrics. J Econom 73:5–59

    Article  MathSciNet  MATH  Google Scholar 

  6. Suarez LE, Shokooh A (1997) An eigenvector expansion method for the solution of motion containing fractional derivatives. J Appl Mech 64(3):629–635

    Article  MathSciNet  MATH  Google Scholar 

  7. Heaviside O (1971) Electromagnetic theory. Chelsea, NewYork

    MATH  Google Scholar 

  8. Panda R, Dash M (2006) Fractional generalized splines and signal processing. Signal Process 86:2340–2350

    Article  MATH  Google Scholar 

  9. Bohannan GW (2008) Analog fractional order controller in temperature and motor control applications. J Vib Control 14:1487–1498

    Article  MathSciNet  Google Scholar 

  10. Idrees A, Rehman M, Saeed U (2017) A quadrature method for numerical solutions of fractional differential equations. Appl Math Comput 307:38–49

    MathSciNet  MATH  Google Scholar 

  11. Sheu L-J, Chen H-K, Chen J-H, Tam L-M (1999) Chaotic dynamics of the fractionally damped Duffing equation. Chaos Soliton Fract 15(2):86–90

    MATH  Google Scholar 

  12. Narahari Achar BN, Hanneken JW, Enck T, Clarke T (2018) Dynamics ofthe fractional oscillator. Phys A 297:361–367

  13. Chow TS (2005) Fractional dynamics of interfaces between soft-nanoparticles and rough substrates. Phys Lett A 342:148–155

    Article  Google Scholar 

  14. He JH (1999) Some applications of nonlinear fractional differential equations and their approximations. Bull Sci Technol 15(2):86–90

    Google Scholar 

  15. Bagley RL, Torvik PJ (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol 27(3):201–210

    Article  MATH  Google Scholar 

  16. Bagley RL, Torvik PJ (1983) Fractional calculus-a different approach to the analysis of viscoe1astically damped structures. AIAA J 21(5):741–748

    Article  MATH  Google Scholar 

  17. Abdulaziz O, Hashim I, Momani S (2008) Solving systems of fractional differential equations by homotopy-perturbation method. Phys Lett A 372:451–459

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen Y, Yi M, Yu C (2012) Error analysis for numerical solution of fractional differential equation by Haar wavelets method. J Comput Sci 3:367–373

    Article  Google Scholar 

  19. Daftardar-Gejji V, Jafari H (2007) Solving a multi-order fractional differential equation using adomian decomposition. Appl Math Comput 189:541–548

    MathSciNet  MATH  Google Scholar 

  20. Diethelm K, Walz G (1997) Numerical solution of fractional order differential equations by extrapolation. Numer Algorithms 16:231–253

    Article  MathSciNet  MATH  Google Scholar 

  21. Diethelm K, Ford NG, Freed AD (2002) A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn 29:3–22

    Article  MathSciNet  MATH  Google Scholar 

  22. Hashim I, Abdulaziz O, Momani S (2009) Homotopy analysis method for fractional IVPs. Commun Nonlinear Sci Numer Simul 14:674–684

    Article  MathSciNet  MATH  Google Scholar 

  23. Lubich C (1985) Fractional linear multistep methods for Abel Volterra integral equations of the second kind. Math Comput 45:463–469

    Article  MathSciNet  MATH  Google Scholar 

  24. Odibat Z, Momani S, Erturk VS (2008) Generalized differential transform method: application to differential equations of fractional order. Appl Math Comput 197:467–477

    MathSciNet  MATH  Google Scholar 

  25. Wu G, Lee EWM (2010) Fractional variational iteration method and its applications. Phys Lett 374:2506–2509

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang Y (2009) A finite difference method for fractional partial differential equations. Appl Math Comput 215:524–529

    MathSciNet  MATH  Google Scholar 

  27. Mashayekhi S, Razzaghi M (2016) Numerical solution of distributed order fractional differential equations by hybrid functions. J Comput Phys 315:169–181

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang F, Yan L (2015) The method of approximate particular solutions for the time-fractional diffusion equation with a non-local boundary condition. Comput Math Appl 70:254–264

    Article  MathSciNet  Google Scholar 

  29. Zhang Y (2009) A finite difference method for fractional partial differential equations. Appl Math Comput 215:524–529

    MathSciNet  MATH  Google Scholar 

  30. Aceto L, Magherini C, Novati P (2014) Fractional convolution quadrature based on generalized Adams methods. Calcolo 51:441–463

    Article  MathSciNet  MATH  Google Scholar 

  31. El-Ajou A, Arqub OA, Al-Smadi M (2015) A general form of the generalized Taylor formula with some applications. Appl Math Comput 256:851–859

    MathSciNet  MATH  Google Scholar 

  32. Lepik U (2009) Solving fractional integral equations by the Haar wavelet method. Appl Math Comput 214:468–478

    MathSciNet  MATH  Google Scholar 

  33. Baleanu D, Ma XJ, Srivastava HM, Yang XJ (2013) A new Neumann series method for solving a family of local fractional Fredholm and Volterra integral equations. Math Probl Eng 2013:1–7

  34. Moghadam MM, Mollahasani N (2016) Two new operational methods for solving a kind of fractional Volterra integral equations. Asian Eur J Math 9:1–13

    MathSciNet  MATH  Google Scholar 

  35. Adibi H, Eshaghi J, Kazem S (2016) Solution of nonlinear weakly singular Volterra integral equations using the fractional-order Legendre functions and pseudospectral method. Math Methods Appl Sci 39:3411–3425

    Article  MathSciNet  MATH  Google Scholar 

  36. Najafalizadeh S, Ezzati R (2016) Numerical methods for solving two-dimensional nonlinear integral equations of fractional order by using two-dimensional block pulse operational matrix. Appl Math Comput 280:46–56

    MathSciNet  MATH  Google Scholar 

  37. Asgari M, Ezzati R (2017) Using operational matrix of two-dimensional bernstein polynomials for solving two-dimensional integral equations of fractional order. Appl Math Comput 307:290–298

    MathSciNet  MATH  Google Scholar 

  38. Mollahasani N, Saeedi H, Moghadam MM, Chuev GN (2011) A CAS wavelet method for solving nonlinear Fredholm integro-differential equations of fractional order. Commun Nonlinear Sci Numer Simul 16:1154–1163

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhu L, Fan Q (2012) Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet. Commun Nonlinear Sci Numer Simul 17:2333–2341

    Article  MathSciNet  MATH  Google Scholar 

  40. Rawashdeh EA (2006) Numerical solution of fractional integro-differential equations by collocation method. Appl Math Comput 176:1–6

    MathSciNet  MATH  Google Scholar 

  41. Yang C (2011) Numerical solution of nonlinear Fredholm integro-differential equations of fractional order by using hybrid of block-pulse functions and Chebyshev polynomials. Math Probl Eng 1–12:2011

    Google Scholar 

  42. Mirzaee F, Samadyar N (2017) Application of orthonormal Bernstein polynomials to construct a efficient scheme for solving fractional stochastic integro-differential equation. Optik 132:262–273

    Article  Google Scholar 

  43. Arqub OA (2018) Computational algorithm for solving singular Fredholm time–fractional partial integrodifferential equations with error estimates. J Appl Math Comput. https://doi.org/10.1007/s12190-018-1176-x. (2017)

  44. Cuomo S, Galletti A, Giunta G, Marcellino L (2017) Reconstruction of implicit curves and surfaces via RBF interpolation. Appl Numer Math 116:157–171

    Article  MathSciNet  MATH  Google Scholar 

  45. Cuomo S, Galletti A, Giunta G, Starace A (2013) Surface reconstruction from scattered point via RBF interpolation on GPU. In: 2013 Federated Conference on computer science and information systems, pp 433–440

  46. Wendland H (2005) Scattered data approximation. Cambridge University Press, New York

    MATH  Google Scholar 

  47. Feng WZ, Yang K, Cui M, Gao XW (2016) Analytically-integrated radial integration BEM for solving three-dimensional transient heat conduction problems. Int Commun Heat Mass Transf 79:21–30

    Article  Google Scholar 

  48. Gao XW, Zhang Ch, Guo L (2007) Boundary-only element solutions of 2D and 3D nonlinear and nonhomogeneous elastic problems. Eng Anal Bound Elem 31:974–982

    Article  MATH  Google Scholar 

  49. Duchon J (1977) Splines minimizing rotation-invariant semi-norms in Sobolev spaces. Springer, Berlin, Heidelberg, pp 85–100

    MATH  Google Scholar 

  50. Meinguet J (1979) Multivariate interpolation at arbitrary points made simple. Z Angew Math Phys 30(2):292–304

    Article  MathSciNet  MATH  Google Scholar 

  51. Wahba G (1979) Convergence rate of “thin plate” smoothing splines when the data are noisy (preliminary report). Springer Lecture Notes in Mathematics, vol 757, pp 233–245

  52. Assari P, Adibi H, Dehghan M (2013) A meshless method for solving nonlinear two-dimensional integral equations of the second kind on non-rectangular domains using radial basis functions with error analysis. J Comput Appl Math 239(1):72–92

    Article  MathSciNet  MATH  Google Scholar 

  53. Assari P, Dehghan M (2017) A meshless method for the numerical solution of nonlinear weakly singular integral equations using radial basis functions. Eur Phys J Plus 132:1–23

    Article  MATH  Google Scholar 

  54. Assari P, Dehghan M (2017) The numerical solution of two-dimensional logarithmic integral equations on normal domains using radial basis functions with polynomial precision. Eng Comput 33:853–870

    Article  Google Scholar 

  55. Assari P, Adibi H, Dehghan M (2014) The numerical solution of weakly singular integral equations based on the meshless product integration (MPI) method with error analysis. Appl Numer Math 81:76–93

    Article  MathSciNet  MATH  Google Scholar 

  56. Assari P, Adibi H, Dehghan M (2014) A meshless method based on the moving least squares (MLS) approximation for the numerical solution of two-dimensional nonlinear integral equations of the second kind on non-rectangular domains. Numer Algorithm 67(2):423–455

    Article  MathSciNet  MATH  Google Scholar 

  57. Mirzaei D, Dehghan M (2010) A meshless based method for solution of integral equations. Appl Numer Math 60(3):245–262

    Article  MathSciNet  MATH  Google Scholar 

  58. Dehghan M, Salehi R (2012) The numerical solution of the non-linear integro-differential equations based on the meshless method. J Comput Appl Math 236(9):2367–2377

    Article  MathSciNet  MATH  Google Scholar 

  59. Assari P, Adibi H, Dehghan M (2014) A meshless discrete Galerkin (MDG) method for the numerical solution of integral equations with logarithmic kernels. J Comput Appl Math 267:160–181

    Article  MathSciNet  MATH  Google Scholar 

  60. Assari P, Dehghan M (2018) Solving a class of nonlinear boundary integral equations based on the meshless local discrete Galerkin (MLDG) method. Appl Numer Math 123:137–158

    Article  MathSciNet  MATH  Google Scholar 

  61. Assari P, Dehghan M (2018) A meshless Galerkin scheme for the approximate solution of nonlinear logarithmic boundary integral equations utilizing radial basis functions. J Comput Appl Math 333:362–381

    Article  MathSciNet  MATH  Google Scholar 

  62. Arqub OA, Al-Smadi M, Shawagfeh N (2013) Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method. Appl Math Comput 219(17):8938–8948

    MathSciNet  MATH  Google Scholar 

  63. Arqub OA, Al-Smadi M (2014) Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations. Appl Math Comput 243(15):911–922

    MathSciNet  MATH  Google Scholar 

  64. Arqub OA (2017) Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations. Neural Comput Appl 82(7):1591–1610

    Article  Google Scholar 

  65. Shawagfeh N, Arqub OA, Momani SM (2014) Analytical solution of nonlinear second-order periodic boundary value problem using reproducing kernel method. J Comput Anal Appl 16(4):750–762

    MathSciNet  MATH  Google Scholar 

  66. Srivastava HM, Kilbas AA, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, San Diego

    MATH  Google Scholar 

  67. Podlubeny I (1999) Fractional differential equations. Academic Press, San Diego, California

    Google Scholar 

  68. Fasshauer GE (2005) Meshfree methods. In: Handbook of theoretical and computational nanotechnology. American Scientific Publishers, Valencia

  69. Buhmann MD (2003) Radial basis functions: theory and implementations. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  70. Narcowich FJ, Sivakumar N, Ward JD (1994) On condition numbers associated with radial-function interpolation. J Math Anal Appl 186(2):457–485

    Article  MathSciNet  MATH  Google Scholar 

  71. Fang W, Wang Y, Xu Y (2004) An implementation of fast wavelet Galerkin methods for integral equations of the second kind. J Sci Comput 20(2):277–302

    Article  MathSciNet  MATH  Google Scholar 

  72. Kaneko H, Xu Y (1994) Gauss-type quadratures for weakly singular integrals and their application to Fredholm integral equations of the second kind. Math Comput 62(206):739–753

    Article  MathSciNet  MATH  Google Scholar 

  73. Bejancu A Jr (1999) Local accuracy for radial basis function interpolation on finite uniform grids. J Approx Theory 99(2):242–257

    Article  MathSciNet  MATH  Google Scholar 

  74. Atkinson KE (1997) The numerical solution of integral equations of the second kind. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  75. Zhang P, Zhang Y (2000) Wavelet method for boundary integral equations. J Comput Math 18(1):25–42

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to both anonymous reviewers for their valuable comments and suggestions which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pouria Assari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assari, P., Cuomo, S. The numerical solution of fractional differential equations using the Volterra integral equation method based on thin plate splines. Engineering with Computers 35, 1391–1408 (2019). https://doi.org/10.1007/s00366-018-0671-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-018-0671-x

Keywords

Mathematics Subject Classification