Skip to main content
Log in

An enhanced time evolutionary optimization for solving engineering design problems

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Time evolutionary optimization (TEO) is a novel population-based meta-heuristic optimization algorithm, inspired by natural selection and evolution of creatures over time. Time and the environment are two main factors of evolution at TEO. In this paper, enhanced time evolutionary optimization (ETEO) is presented. ETEO is the new version of TEO which modifies time evolutionary factor and applied population clustering. Population clustering amplified environmental factor to increase the efficiency of ETEO. For this purpose, a memory is used to save some best designs and ETEO can escape from local optimal points. The algorithm was validated by solving several constraint benchmarks and engineering design problems. The comparison results between the proposed algorithm and other metaheuristic methods contain TEO, indicate the ETEO is competitive with them, and in some cases superior to, other available heuristic methods in terms of the efficiency, faster convergence rate, robustness of finding final solution and requires a smaller number of function evaluations for solving constrained engineering problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ghoddosian A, Sheikhi M (2013) Metaheuristic optimization algorithm in engineering. Semnan University, Semnan

    Google Scholar 

  2. Goldberg DE (1989) Genetic algorithms in search optimization and machine learning. Addison-Wesley, Boston

    MATH  Google Scholar 

  3. Dorigo M, Maniezzo V, Colorni A (1996) The ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern 26(1):29–41

    Article  Google Scholar 

  4. Sheikhi M, Ghoddosian A (2013) A hybrid imperialist competitive ant colony algorithm for optimum geometry design of frame structures. Struct Eng Mech 46(3):403–416

    Article  Google Scholar 

  5. Mirzaei Z, Akbarpour A, Khatibinia M, Khashei Siuki A (2015) Optimal design of homogeneous earth dams by particle swarm optimization incorporating support vector machine approach. Int J Geomech Eng 9(6):709–727

    Article  Google Scholar 

  6. Kaveh A, Zakian P (2018) Improved GWO algorithm for optimal of truss structures. Eng Comput 34(4):685–707

    Article  Google Scholar 

  7. Kaveh A, Farhoudi N (2013) A new optimization method: Dolphin echolocation. Adv Eng Softw 59:53–70

    Article  Google Scholar 

  8. Arjmand M, Sheikhi Azqandi M, Delavar M (2018) Hybrid improved dolphin echolocation and ant colony optimization for optimal discrete sizing of truss structures. J Rehabil Civ Eng 6(1):74–89

    Google Scholar 

  9. Riyahi Vezvari M, Ghoddosian A, Nikoobin A (2018) Numbers cup optimization: a new method for optimization problems. Struct Eng Mech 66(4):465–476

    Google Scholar 

  10. Senel FA, Gokce F, Yukcel AS, Yigit T (2018) A novel hybrid PSO-GWO algorithm for optimization problems. Eng Comput. https://doi.org/10.1007/s00366-018-0668-5

    Article  Google Scholar 

  11. Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray optimization. Comput Struct 112:283–294. https://doi.org/10.1016/j.compstruc.2012.09.003

    Article  Google Scholar 

  12. Kaveh A, Mahdavi VR (2014) Colliding bodies optimization method for optimum design of truss structures with continuous variables. Adv Eng Softw 70:1–12

    Article  Google Scholar 

  13. Kaveh A, Ilchi Ghazaan M (2014) Enhanced colliding bodies optimization for design problems with continuous and discrete variables. Adv Eng Softw 77:66–75

    Article  Google Scholar 

  14. Kaveh A, Ilchi Ghazaan M (2017) A new meta-heuristic algorithm: vibrating particles system. Sci Iran 24(2):551–566. https://doi.org/10.24200/sci.2017.2417

    Article  MATH  Google Scholar 

  15. Sheikhi M, Delavar M, Arjmand M (2016) Time evolutionary optimization: a new meta-heuristic optimization algorithm. In: Proceedings of the 4th international congress on civil engineering, architecture and urban development, Shahid Beheshti University, Tehran, Iran

  16. Kaveh A (2014) Ray optimization algorithm. Advances in metaheuristic algorithms for optimal design of structures, book chapter. Springer, Cham, pp 233–276

    Book  Google Scholar 

  17. Tsoulos IG (2008) Modifications of real code genetic algorithm for global optimization. Appl Math Comput 203:598–607

    MathSciNet  MATH  Google Scholar 

  18. Liu H, Cai Z, Wang Y (2010) Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl Soft Comput 10:629–640

    Article  Google Scholar 

  19. Becerra R, Coello CAC (2006) Cultured differential evolution for constrained optimization. Comput Methods Appl Mech Eng 195:4303–4322

    Article  MathSciNet  Google Scholar 

  20. Homaifar A, Qi CX, Lai SH (1994) Constrained optimization via genetic algorithms. Simulation 62:242–253

    Article  Google Scholar 

  21. Wang L, Li LP (2010) An effective differential evolution with level comparison for constrained engineering design. Struct Multidiscip Optim 41:947–963

    Article  Google Scholar 

  22. Zhang M, Luo W, Wang X (2008) Differential evolution with dynamic stochastic selection for constrained optimization. Inform Sci 178:3043–3074

    Article  Google Scholar 

  23. Zavala AEM, Aguirre AH (2005) Diharce, constrained optimization via evolutionary swarm optimization algorithm (PESO). Proc Conf Genet Evol Comput 2005:209–216

    Google Scholar 

  24. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110:151–166

    Article  Google Scholar 

  25. Rao RV, Patel V (2012) An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems. Int J Ind Eng Comput 3:535–560

    Google Scholar 

  26. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13:2592–2612

    Article  Google Scholar 

  27. Lampinen J (2002) A constraint handling approach for the differential evolution algorithm. IEEE Trans Evol Comput 2002:1468–1473

    Google Scholar 

  28. Zahara EY, Kao T (2009) Hybrid Nelder–Mead simplex search and particle swarm optimization for constrained engineering design problems. Expert Syst Appl 36:3880–3886

    Article  Google Scholar 

  29. Mezura-Montes E, Coello CAC (2005) A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Trans Evol Comput 9:1–17

    Article  Google Scholar 

  30. Wang Y, Cai Z, Zhou Y, Fan Z (2009) Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint handling technique. Struct Multidiscip Optim 37:395–413

    Article  Google Scholar 

  31. Runarsson TP, Xin Y (2005) Search biases in constrained evolutionary optimization. IEEE Trans Syst Man Cybern Part C Appl Rev 35:233–243

    Article  Google Scholar 

  32. Karaboga D, Basturk B (2007) Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems, LNAI, vol 4529. Springer, Berlin, pp 789–798

    MATH  Google Scholar 

  33. Coello CAC, Becerra RL (2004) Efficient evolutionary optimization through the use of a cultural algorithm. Eng Optim 36:219–236

    Article  Google Scholar 

  34. Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Method Appl Mech Eng 194:3902–3933

    Article  Google Scholar 

  35. Amirjanov A (2006) The development of a changing range genetic algorithm. Comput Methods Appl Mech Eng 195:2495–2508

    Article  MathSciNet  Google Scholar 

  36. Michalewicz Z (1995) Genetic algorithms, numerical optimization, and constraints. In: Esheman L (ed) Proceedings of the sixth international conference on genetic algorithms. San Mateo: Morgan Kauffman, pp 151–8

  37. Tessema B, Yen GG (2006) A self adaptive penalty function based algorithm for constrained optimization. IEEE Trans Evol Comput 2006:246–253

    Article  Google Scholar 

  38. Runarsson TP, Xin Y (2000) Stochastic ranking for constrained evolutionary optimization. IEEE Trans Evol Comput 4:284–294

    Article  Google Scholar 

  39. Renato AK, Dos Santos LC (2006) Coevolutionary particle swarm optimization using gaussian distribution for solving constrained optimization problems. IEEE Trans Syst Man Cybern Part B Cybern 36:1407–1416

    Article  Google Scholar 

  40. Huang FZ, Wang L, He Q (2007) An effective co-evolutionary differential evolution for constrained optimization. Appl Math Comput 186(1):340–356

    MathSciNet  MATH  Google Scholar 

  41. Ray T, Liew KM (2003) Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans Evol Comput 7:386–396

    Article  Google Scholar 

  42. Parsopoulos K, Vrahatis M (2005) Unified particle swarm optimization for solving constrained engineering optimization problems, vol 3612. Springer, Berlin, pp 582–591

    Google Scholar 

  43. Mezura-Montes E, Velazquez-Reyes J, Coello CAC (2006) Modified differential evolution for constrained optimization. Evol Comput CEC 2006, IEEE Congress, pp 25–32

  44. Kaveh A, Zolghadr A (2016) A novel meta-heuristic algorithm: tug of war optimization. Int J Optim Civ Eng 6(4):469–492

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of Bozorgmehr University of Qaenat for this research under contract number 39144.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Sheikhi Azqandi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

1.1 Constrained problem 1

$$f\left( x \right) = - \left( {\sqrt n } \right)^{n} \cdot \mathop \prod \limits_{i = 1}^{n} x_{i} .$$

Subject to:

$$h\left( x \right) = \mathop \sum \limits_{i = 1}^{n} x_{i}^{2} - 1,$$
$$0 \le x_{i} \le 1\quad i = 1,2, \ldots ,n.$$

1.2 Constrained problem 2

$$\hbox{max} f\left( x \right) = \frac{{sin^{3} \left( {2\pi x_{1} } \right) { \sin }(2\pi x_{2} )}}{{x_{1}^{3} \left( {x_{1} + x_{2} } \right)}}.$$

Subject to:

$$g_{1} \left( x \right) = x_{1}^{2} - x_{2} + 1 \le 0,$$
$$g_{2} \left( x \right) = 1 - x_{1} + \left( {x_{2} - 4} \right)^{2} \le 0,$$
$$0 \le x_{i} \le 1 i = 1,2.$$

1.3 Constrained problem 3

$$f\left( x \right) = 5.3578547x_{3}^{2} + 0.8356891x_{1} x_{5} + 37.293239x_{1} - 40792.141.$$

Subject to:

$$\begin{aligned} & g_{1} \left( x \right) = 85.334407 + 0.0056858x_{2} x_{5} + 0.0006262x_{1} x_{4} - 0.0022053x_{3} x_{5} - 92 \le 0 \\ & g_{2} \left( x \right) = - 85.334407 - 0.0056858x_{2} x_{5} - 0.0006262x_{1} x_{4} - 0.0022053x_{3} x_{5} \le 0 \\ & g_{3} \left( x \right) = 80.51249 + 0.0071317x_{2} x_{5} + 0.0029955x_{1} x_{2} + 0.0021813x_{3}^{2} - 110 \le 0 \\ & g_{4} \left( x \right) = - 80.51249 - 0.0071317x_{2} x_{5} - 0.0029955x_{1} x_{2} - 0.0021813x_{3}^{2} + 90 \le 0 \\ & g_{5} \left( x \right) = 9.300961 + 0.0047026x_{3} x_{5} + 0.0012547x_{1} x_{3} + 0.0019085x_{3} x_{4} - 25 \le 0 \\ & g_{6} \left( x \right) = - 9.300961 - 0.0047026x_{3} x_{5} - 0.0012547x_{1} x_{3} - 0.0019085x_{3} x_{4} + 20 \le 0 \\ & 33 \le x_{2} \le 45 \\ & 27 \le x_{i} \le 45 \quad i = 3,4,5. \\ \end{aligned}$$

1.4 Constrained problem 4

$$f\left( x \right) = \left( {x_{1} - 10} \right)^{2} + 5\left( {x_{2} - 12} \right)^{2} + x_{3}^{4} + 3\left( {x_{4} - 11} \right)^{2} + 10x_{5}^{6} + 7x_{6}^{2} + x_{7}^{4} - 4x_{6} x_{7} - 10x_{6} - 8x_{7} ,$$

Subject to:

$$\begin{aligned} & g_{1\left( x \right)} = 127 - 2x_{1}^{2} - 3x_{2}^{4} - x_{3} - 4x_{4}^{2} - 5x_{5} \ge 0 \\ & g_{2\left( x \right)} = 282 - 7x_{1} - 3x_{2} - 10x_{3}^{2} - x_{4} + x_{5} \ge 0 \\ & g_{3\left( x \right)} = 196 - 23x_{1} - x_{2}^{2} - 6x_{6}^{2} + 8x_{7} \ge 0 \\ & g_{4\left( x \right)} = - 4x_{1}^{2} - x_{2}^{2} + 3x_{{1x_{2} }} - 2x_{3}^{2} - 5x_{6} + 11x_{7} \ge 0 \\ & - 10 \le x_{i} \le 10\quad i = 1,2, \ldots ,7. \\ \end{aligned}$$

Appendix 2

2.1 Three-bar truss design problem

$$f\left( x \right) = \left( {2\sqrt {\left( 2 \right)x_{1} } + x_{2} } \right) \times l.$$

Subject to

$$\begin{aligned} & g_{1} \left( x \right) = \frac{{\sqrt 2 x_{1} + x_{2} }}{{\sqrt 2 x_{1}^{2} + 2x_{1} x_{2} }}P - \sigma \le 0 \\ & g_{2} \left( x \right) = \frac{{x_{2} }}{{\sqrt 2 x_{1}^{2} + 2x_{1} x_{2} }}P - \sigma \le 0 \\ & g_{3} \left( x \right) = \frac{1}{{\sqrt 2 x_{2} + x_{1} }}P - \sigma \le 0 \\ & 0 \le x_{i} \le \quad i = 1,2 \\ & l = 100\;{\text{cm,}}\,P = 2\;\frac{\text{kN}}{{{\text{cm}}^{2} }}, \sigma = 2\;\frac{\text{kN}}{{{\text{cm}}^{2} }} \\ \end{aligned}$$

2.2 Pressure vessel design problem

$$f\left( x \right) = 0.6224x_{1} x_{3} x_{4} + 1.7781x_{2} x_{3}^{2} + 3.1661x_{1}^{2} x_{4} + 19.84 x_{1}^{2} x_{3} .$$

Subject to:

$$\begin{aligned} & g_{1} \left( x \right) = - x_{1} + 0.0193x_{3} \le 0, \\ & g_{2} \left( x \right) = - x_{2} + 0.00954x_{3} \le 0, \\ & g_{3} \left( x \right) = - \pi x_{3}^{2} x_{4} - \frac{{4\pi x_{3}^{3} }}{3} + 1296,000 \le 0, \\ & g_{4} \left( x \right) = x_{4} - 240 \le 0, \\ & 0 \le x_{i} \le 100\quad i = 1,2, \\ & 10 \le x_{i} \le 100\quad i = 3,4. \\ \end{aligned}$$

2.3 Speed reducer design problem

$$f\left( x \right) = 0.7854x_{1} x_{2}^{2} (3.3333x_{3}^{2} + 14.9334x_{3} - 43.0934) - 1.508x_{1} (x_{6}^{2} + x_{7}^{2} ) + 7.4777(x_{6}^{3} + x_{7}^{3} ) + 0.7854(x_{4} x_{6}^{2} + x_{5} x_{7}^{2} ).$$

Subject to:

$$\begin{aligned} & g_{1} \left( x \right) = \frac{27}{{x_{1} x_{2}^{2} x_{3} }} - 1 \le 0 \\ & g_{2} \left( x \right) = \frac{397.5}{{x_{1} x_{2}^{2} x_{3}^{2} }} - 1 \le 0 \\ & g_{3} \left( x \right) = \frac{{1.93x_{4}^{3} }}{{x_{2} x_{6}^{4} x_{3} }} - 1 \le 0 \\ & g_{4} \left( x \right) = \frac{{1.93x_{5}^{3} }}{{x_{2} x_{7}^{4} x_{3} }} - 1 \le 0 \\ & g_{5} \left( x \right) = \frac{{\left[ {\left( {745x_{4} /x_{2} x_{3} } \right)^{2} + 16.9 \times 10^{6} } \right]^{0.5} }}{{110x_{6}^{3} }} - 1 \le 0 \\ & g_{6} \left( x \right) = \frac{{\left[ {\left( {745x_{5} /x_{2} x_{3} } \right)^{2} + 157.5 \times 10^{6} } \right]^{0.5} }}{{85x_{7}^{3} }} - 1 \le 0 \\ & g_{7} \left( x \right) = \frac{{x_{2} x_{3} }}{40} - 1 \le 0 \\ & g_{8} \left( x \right) = \frac{{5x_{2} }}{{x_{1} }} - 1 \le 0 \\ & g_{9} \left( x \right) = \frac{{x_{1} }}{{12x_{2} }} - 1 \le 0 \\ & g_{10} \left( x \right) = \frac{{1.5x_{6} + 1.9}}{{x_{4} }} - 1 \le 0 \\ & g_{11} \left( x \right) = \frac{{1.1x_{7} + 1.9}}{{x_{5} }} - 1 \le 0 \\ \end{aligned}$$

where

$$\begin{aligned} & 2.6 \le x_{1} \le 3.6, 0.7 \le x_{2} \le 0.8, 17 \le x_{3} \le 28, 7.3 \le x_{4} \le 8.3 \\ & 7.3 \le x_{5} \le 8.3, 2.9 \le x_{6} \le 3.9, 5.0 \le x_{7} \le 5.5. \\ \end{aligned}$$

2.4 Tension/compression spring design problem

$$f\left( x \right) = (x_{3} + 2)x_{2} x_{1}^{2} .$$

Subject to:

$$\begin{aligned} & g_{1} \left( x \right) = 1 - \frac{{x_{2}^{3} x_{3} }}{{71.785x_{1}^{4} }} \le 0 \\ & g_{2} \left( x \right) = 4x_{2}^{2} - \frac{{x_{1} x_{2} }}{{12.566\left( {x_{2}^{{}} x_{1}^{3} - x_{1}^{4} } \right)}} + \frac{1}{{5108x_{1}^{2} }} - 1 \le 0 \\ & g_{3} \left( x \right) = 1 - \frac{{140.45x_{1} }}{{x_{2}^{2} x_{3} }} \le 0 \\ & g_{4} \left( x \right) = \frac{{x_{1} + x_{2} }}{1.5} - 1 \le 0 \\ & 0.05 \le x_{1} \le 2.00 \\ & 0.25 \le x_{2} \le 1.30 \\ & 2.00 \le x_{3} \le 15.00 \\ \end{aligned}$$

2.5 Welded beam design problem

$$f\left( x \right) = 1.10471x_{1}^{2} x_{2} + 0.04811x_{3} x_{4} (14 + x_{2} ).$$

Subject to:

$$\begin{aligned} & g_{1} \left( x \right) = \tau \left( x \right) - \tau_{ \text{max} } (x) \le 0 \\ & g_{2} \left( x \right) = \sigma \left( x \right) - \sigma_{ \text{max} } \left( x \right) \le 0 \\ & g_{3} \left( x \right) = x_{1} - x_{4} \le 0 \\ & g_{4} \left( x \right) = 0.10471x_{1}^{2} + 0.04811x_{3} x_{4} \left( {14 + x_{2} } \right) - 5 \le 0 \\ & g_{5} \left( x \right) = 0.125 - x_{1} \le 0 \\ & g_{6} \left( x \right) = \delta (x) - \delta_{\text{max} } \le 0 \\ & g_{7} \left( x \right) = P - P_{\text{c}} \left( x \right) \le 0 \\ & 0.1 \le x_{i} \le 2,\quad i = 1, 4 \\ & 0.1 \le x_{i} \le 10,\quad i = 2, 3. \\ \end{aligned}$$

where

$$\tau \left( x \right) = \sqrt {(\tau^{'} )^{2} + 2\tau^{'} \tau^{''} \frac{{x_{2} }}{2R} + (\tau^{''} )^{2} } ,$$
$$\tau^{'} = \frac{P}{{\sqrt 2 x_{1} x_{2} }}$$
$$\tau^{''} = \frac{\text{MR}}{J}$$
$$M = 6000\left( {14 + \frac{{x_{2} }}{2}} \right)$$
$$R = \sqrt {\frac{{x_{2}^{2} + \left( {x_{1} + x_{3} } \right)^{2} }}{4}}$$
$$J = 2\left( {\sqrt 2 x_{1} x_{2} \left( {\frac{{x_{2}^{2} }}{12}} \right) + \left( {\frac{{\left( {x_{1} + x_{3} } \right)^{2} }}{4}} \right)} \right)$$
$$\sigma \left( x \right) = \frac{504000}{{x_{4} x_{3}^{2} }}$$
$$\delta \left( x \right) = \frac{201952}{{x_{4} x_{3}^{3} }}$$
$$P_{c} \left( x \right) = 4.013E\left( {1 - 0.028234x_{3} } \right)\frac{{x_{3} x_{4}^{3} }}{{6L^{2} }}$$
$$L = 14,E = 30 \times 10^{6}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikhi Azqandi, M., Delavar, M. & Arjmand, M. An enhanced time evolutionary optimization for solving engineering design problems. Engineering with Computers 36, 763–781 (2020). https://doi.org/10.1007/s00366-019-00729-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00729-w

Keywords

Navigation