Skip to main content
Log in

Nonlinear dynamic analysis of piezoelectric-bonded FG-CNTR composite structures using an improved FSDT theory

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In the present work, a geometrically nonlinear finite shell element is first presented to predict nonlinear dynamic behavior of piezolaminated functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shell, to enrich the existing research results on FG-CNTRC structures. The governing equations are developed via an improved first-order shear deformation theory (FSDT), in which a parabolic distribution of the transverse shear strains across the shell thickness is assumed and a zero condition of the transverse shear stresses on the top and bottom surfaces is imposed. Using a micro-mechanical model on the foundation of the developed rule of mixture, the effective material properties of the FG-CNTRC structures, which are strengthened by single-walled carbon nanotubes (SWCNTs), are scrutinized. The effectiveness of the present method is demonstrated by validating the obtained results against those of other studies from literature considering shell structures. Furthermore, some novel numerical results, including the nonlinear transient deflection of smart FG-CNTRC spherical and cylindrical shells, will be presented and can be considered for future structure design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Gabbert U, Duvigneau F, Ringwelski S (2017) Noise control of vehicle drive systems. Facta Univ Ser Mech Eng 15:183–200

    Google Scholar 

  2. Gabbert U, Köppe H, Seeger F, Berger H (2002) Modeling of smart composite shell structures. J Theor Appl Mech 40:575–593

  3. Jrad H, Mallek H, Wali M, Dammak F (2018) Finite element formulation for active functionally graded thin-walled structures. Comptes Rend Mécanique 346:1159–1178

    Google Scholar 

  4. Mallek H, Jrad H, Wali M, Dammak F (2019) Piezoelastic response of smart functionally graded structure with integrated piezoelectric layers using discrete double directors shell element. Compos Struct 210:354–366

    Google Scholar 

  5. Marinković D, Marinković Z, Petrović G (2012) On efficiency of a single-layer shell element for composite laminated structures. Facta Univ Ser Mech Eng 10:105–112

    Google Scholar 

  6. Marinković D, Zehn M (2015) Finite element formulation for active composite laminates. Am J Eng Appl Sci 8:328

    Google Scholar 

  7. Mukherjee A, Chaudhuri AS (2002) Active control of dynamic instability of piezolaminated imperfect columns. Smart Mater Struct 11:874–879

    Google Scholar 

  8. Yao LQ, Zhang JG, Lu L, Lai MO (2004) Nonlinear extension and bending of piezoelectric laminated plate under large applied field actuation. Smart Mater Struct 13:404–414

    Google Scholar 

  9. Moita JMS, Correia IF, Soares CMM, Soares CAM (2004) Active control of adaptive laminated structures with bonded piezoelectric sensors and actuators. Compos Struct 82:17–19

    MathSciNet  Google Scholar 

  10. Saviz MR, Shakeri M, Yas MH (2007) Electroelastic fields in a layered piezoelectric cylindrical shell under dynamic load. Smart Mater Struct 16:1683–1695

    Google Scholar 

  11. Saviz MR, Mohammadpourfard M (2010) Dynamic analysis of a laminated cylindrical shell with piezoelectric layers under dynamic loads. Finite Elem Anal Des 46:770–781

    MathSciNet  Google Scholar 

  12. Frikha A, Zghal S, Dammak F (2018) Finite rotation three and four nodes shell elements for functionally graded carbon nanotubes-reinforced thin composite shells analysis. Comput Methods Appl Mech Eng 329:289–311

    MathSciNet  MATH  Google Scholar 

  13. Frikha A, Dammak F (2017) Geometrically non-linear static analysis of functionally graded material shells with a discrete double directors shell element. Comput Methods Appl Mech Eng 315:1–24

    MathSciNet  MATH  Google Scholar 

  14. Hajlaoui A, Triki E, Frikha A et al (2017) Nonlinear dynamics analysis of FGM shell structures with a higher order shear strain enhanced solid-shell element. Latin Am J Solids Struct 14:72–91

    Google Scholar 

  15. Jrad H, Mars J, Wali M, Dammak F (2019) Geometrically nonlinear analysis of elastoplastic behavior of functionally graded shells. Eng Comput 35:833–847

    Google Scholar 

  16. Jrad H, Mars J, Wali M, Dammak F (2018) An extended finite element method for modeling elastoplastic FGM plate-shell type structures. Struct Eng Mech 68:299–312

    Google Scholar 

  17. Mars J, Koubaa S, Wali M, Dammak F (2017) Numerical analysis of geometrically non-linear behavior of functionally graded shells. Latin Am J Solids Struct 14:1952–1978

    Google Scholar 

  18. Mellouli H, Jrad H, Wali M, Dammak F (2019) Geometrically nonlinear meshfree analysis of 3D-shell structures based on the double directors shell theory with finite rotations. Steel Compos Struct 31:397

    MATH  Google Scholar 

  19. Zghal S, Frikha A, Dammak F (2018) Non-linear bending analysis of nanocomposites reinforced by graphene-nanotubes with finite shell element and membrane enhancement. Eng Struct 158:95–109

    Google Scholar 

  20. Katariya P, Hirwani C, Panda S (2019) Geometrically nonlinear deflection and stress analysis of skew sandwich shell panel using higher-order theory. Eng Comput 35:467–485

    Google Scholar 

  21. Icardi U, Di Sciuva M (1996) Large-deflection and stress analysis of multilayered plates with induced-strain actuators. Smart Mater Struct 5:140

    Google Scholar 

  22. Mukherjee A, Saha Chaudhuri A (2002) Piezolaminated beams with large deformations. Int J Solids Struct 39:4567–4582

    MATH  Google Scholar 

  23. Kulkarni SA, Bajoria KM (2006) Geometrically nonlinear analysis of smart thin and sandwich plates—Sudhakar A. Kulkarni, Kamal M. Bajoria, 2006. J Sandwich Struct Mater 8:321–341

    Google Scholar 

  24. Panda S, Ray MC (2008) Nonlinear finite element analysis of functionally graded plates integrated with patches of piezoelectric fiber reinforced composite. Finite Elem Anal Des 44:493–504

    Google Scholar 

  25. Moita JMS, Soares CMM, Soares CAM (2002) Geometrically non-linear analysis of composite structures with integrated piezoelectric sensors and actuators. Compos Struct 57:253–261

    Google Scholar 

  26. Mallek H, Jrad H, Wali M, Dammak F (2019) Geometrically nonlinear finite element simulation of smart laminated shells using a modified first-order shear deformation theory. J Intell Mater Syst Struct 30:517–535

    Google Scholar 

  27. Li H, Wang X, Chen J (2019) Nonlinear electro-mechanical coupling vibration of corrugated graphene/piezoelectric laminated structures. Int J Mech Sci 150:705–714

    Google Scholar 

  28. Sohn JW, Choi S-B, Kim HS (2011) Vibration control of smart hull structure with optimally placed piezoelectric composite actuators. Int J Mech Sci 53:647–659

    Google Scholar 

  29. Zhang SQ, Zhao GZ, Rao MN (2019) A review on modeling techniques of piezoelectric integrated plates and shells. J Intell Mater Syst Struct 30(8):1133–1147

    Google Scholar 

  30. Marinković D, Köppe H, Gabbert U (2009) Aspects of modeling piezoelectric active thin-walled structures. J Intell Mater Syst Struct 20:1835–1844

    Google Scholar 

  31. Rao MN, Tarun S, Schmidt R, Schröder K-U (2016) Finite element modeling and analysis of piezo-integrated composite structures under large applied electric fields. Smart Mater Struct 25:055044

    Google Scholar 

  32. Rao MN, Schmidt R (2014) Static and dynamic finite rotation FE-analysis of thin-walled structures with piezoelectric sensor and actuator patches or layers. Smart Mater Struct 23:095006

    Google Scholar 

  33. Zhang S-Q, Li Y-X, Schmidt R (2015) Active shape and vibration control for piezoelectric bonded composite structures using various geometric nonlinearities. Compos Struct 122:239–249

    Google Scholar 

  34. Zhang SQ, Schmidt R (2014) Static and dynamic FE analysis of piezoelectric integrated thin-walled composite structures with large rotations. Compos Struct 112:345–357

    Google Scholar 

  35. Zhang SQ, Schmidt R (2013) Large rotation FE transient analysis of piezolaminated thin-walled smart structures. Smart Mater Struct 22:105025

    Google Scholar 

  36. Marinković D, Rama G (2017) Co-rotational shell element for numerical analysis of laminated piezoelectric composite structures. Compos B Eng 125:144–156

    Google Scholar 

  37. Rama G (2017) A 3-node piezoelectric shell element for linear and geometrically nonlinear dynamic analysis of smart structures. Facta Univ Ser Mech Eng 15:31–44

    Google Scholar 

  38. Rama G, Marinković D, Zehn M (2018) Efficient three-node finite shell element for linear and geometrically nonlinear analyses of piezoelectric laminated structures. J Intell Mater Syst Struct 29:345–357

    Google Scholar 

  39. Marinković D, Rama G, Zehn M (2019) Abaqus implementation of a corotational piezoelectric 3-node shell element with drilling degree of freedom. Facta Univ Ser Mech Eng 17:269–283

    Google Scholar 

  40. Hajlaoui A, Chebbi E, Wali M, Dammak F (2019) Geometrically nonlinear analysis of FGM shells using solid-shell element with parabolic shear strain distribution. Int J Mech Mater Des. https://doi.org/10.1007/s10999-019-09465-x

    Article  Google Scholar 

  41. Mellouli H, Jrad H, Wali M, Dammak F (2019) Meshless implementation of arbitrary 3D-shell structures based on a modified first order shear deformation theory. Comput Math Appl 77:34–49

    MathSciNet  MATH  Google Scholar 

  42. Mellouli H, Jrad H, Wali M, Dammak F (2019) Meshfree implementation of the double director shell model for FGM shell structures analysis. Eng Anal Bound Elem 99:111–121

    MathSciNet  MATH  Google Scholar 

  43. Trabelsi S, Frikha A, Zghal S, Dammak F (2019) A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells. Eng Struct 178:444–459

    Google Scholar 

  44. Trabelsi S, Frikha A, Zghal S, Dammak F (2018) Thermal post-buckling analysis of functionally graded material structures using a modified FSDT. Int J Mech Sci 144:74–89

    Google Scholar 

  45. Wali M, Hentati T, Jarraya A, Dammak F (2015) Free vibration analysis of FGM shell structures with a discrete double directors shell element. Compos Struct 125:295–303

    Google Scholar 

  46. Wali M, Hajlaoui A, Dammak F (2014) Discrete double directors shell element for the functionally graded material shell structures analysis. Comput Methods Appl Mech Eng 278:388–403

    MathSciNet  MATH  Google Scholar 

  47. Bouhamed A, Jrad H, Mars J et al (2019) Homogenization of elasto-plastic functionally graded material based on representative volume element: application to incremental forming process. Int J Mech Sci 160:412–420

    Google Scholar 

  48. Rajasekaran S (2018) Analysis of axially functionally graded nano-tapered Timoshenko beams by element-based Bernstein pseudospectral collocation (EBBPC). Eng Comput 34:543–563

    Google Scholar 

  49. Alizadeh M, Fattahi AM (2019) Non-classical plate model for FGMs. Eng Comput 35:215–228

    Google Scholar 

  50. Hajlaoui A, Chebbi E, Dammak F (2019) Buckling analysis of carbon nanotube reinforced FG shells using an efficient solid-shell element based on a modified FSDT. Thin-Walled Struct 144:106254

    Google Scholar 

  51. Zghal S, Frikha A, Dammak F (2018) Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures. Appl Math Model 53:132–155

    MathSciNet  MATH  Google Scholar 

  52. Zghal S, Frikha A, Dammak F (2017) Static analysis of functionally graded carbon nanotube-reinforced plate and shell structures. Compos Struct 176:1107–1123

    MATH  Google Scholar 

  53. Zhang LW, Xiao LN, Zou GL, Liew KM (2016) Elastodynamic analysis of quadrilateral CNT-reinforced functionally graded composite plates using FSDT element-free method. Compos Struct 148:144–154

    Google Scholar 

  54. Zhang LW, Liu WH, Xiao LN (2017) Elastodynamic analysis of regular polygonal CNT-reinforced composite plates via FSDT element-free method. Eng Anal Bound Elem 76:80–89

    MathSciNet  MATH  Google Scholar 

  55. Lei ZX, Zhang LW, Liew KM (2015) Elastodynamic analysis of carbon nanotube-reinforced functionally graded plates. Int J Mech Sci 99:208–217

    Google Scholar 

  56. Mallek H, Jrad H, Algahtani A et al (2019) Geometrically non-linear analysis of FG-CNTRC shell structures with surface-bonded piezoelectric layers. Comput Methods Appl Mech Eng 347:679–699

    MathSciNet  MATH  Google Scholar 

  57. Zhang LW, Song ZG, Liew KM (2016) Optimal shape control of CNT reinforced functionally graded composite plates using piezoelectric patches. Compos B Eng 85:140–149

    Google Scholar 

  58. Mohammadzadeh-Keleshteri M, Asadi H, Aghdam MM (2017) Geometrical nonlinear free vibration responses of FG-CNT reinforced composite annular sector plates integrated with piezoelectric layers. Compos Struct 171:100–112

    Google Scholar 

  59. Alibeigloo A (2014) Three-dimensional thermoelasticity solution of functionally graded carbon nanotube reinforced composite plate embedded in piezoelectric sensor and actuator layers. Compos Struct 118:482–495

    Google Scholar 

  60. Alibeigloo A, Zanoosi AP (2017) Thermo-electro-elasticity solution of functionally graded carbon nanotube reinforced composite cylindrical shell embedded in piezoelectric layers. Compos Struct 173:268–280

    Google Scholar 

  61. Nguyen-Quang K, Vo-Duy T, Dang-Trung H, Nguyen-Thoi T (2018) An isogeometric approach for dynamic response of laminated FG-CNT reinforced composite plates integrated with piezoelectric layers. Comput Methods Appl Mech Eng 332:25–46

    MathSciNet  MATH  Google Scholar 

  62. Rao MN, Schmidt R, Schröder K-U (2018) Forced vibration analysis of FG-graphene platelet reinforced polymer composite shells bonded with piezoelectric layers considering electroelastic nonlinearities. In: Proceedings of the ASME 2018 conference on smart materials, adaptive structures and intelligent systems volume 1: development and characterization of multifunctional materials; modeling, simulation, and control of adaptive systems; integrated system design and implementation San Antonio, Texas, USA, pp 10–12

  63. Rao MN, Schmidt R, Schröder K-U (2018) Modelling and analysis of piezolaminated functionally graded polymer composite structures reinforced with graphene nanoplatelets under strong electroelastic fields. Appl Mech Mater 875:3–8

    Google Scholar 

  64. Kiani Y, Dimitri R, Tornabene F (2018) Free vibration of FG-CNT reinforced composite skew cylindrical shells using the Chebyshev-Ritz formulation. Compos B Eng 147:169–177

    Google Scholar 

  65. Mindlin RD (1951) Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates. J Appl Mech Trans ASME 18:31–38

    MATH  Google Scholar 

  66. Shi G (2007) A new simple third-order shear deformation theory of plates. Int J Solids Struct 44:4399–4417

    MATH  Google Scholar 

  67. Tzou HS, Ye R (1996) Analysis of piezoelastic structures with laminated piezoelectric triangle shell elements. AIAA J 34:110–115

    MATH  Google Scholar 

  68. Rao MN, Schmidt R (2015) Finite rotation FE-simulation and active vibration control of smart composite laminated structures. Comput Mech 55:719–735

    MathSciNet  MATH  Google Scholar 

  69. Frikha A, Zghal S, Dammak F (2018) Dynamic analysis of functionally graded carbon nanotubes-reinforced plate and shell structures using a double directors finite shell element. Aerosp Sci Technol 78:438–451

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mallek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Newmark’s algorithm to solve \({\mathbf{M}}\,\varvec{\ddot{\varGamma }} + \varvec{K}_{{}}\varvec{\varGamma}\, = \varvec{F}\)

Appendix A: Newmark’s algorithm to solve \({\mathbf{M}}\,\varvec{\ddot{\varGamma }} + \varvec{K}_{{}}\varvec{\varGamma}\, = \varvec{F}\)

Initial acceleration:

$$\varvec{\ddot{\varGamma }}_{0} = {\mathbf{M}}^{ - 1} \left[ {{\mathbf{F}}_{0} - {\mathbf{K}}\varvec{\varGamma}_{0} } \right].$$
(50)

New state at \(t + \Delta t.\)

$${\mathbf{F}}_{t + \Delta t} - \left( {{\mathbf{M}}\varvec{\ddot{\varGamma }}_{t + \Delta t} + {\mathbf{K}}\varvec{\varGamma}_{t + \Delta t} } \right) = {\mathbf{0}}.$$
(51)

Computation of \({\bar{\mathbf{K}}}:\)

$${\bar{\mathbf{K}}} = {\mathbf{K}} + \frac{1}{{\beta \Delta t^{2} }}{\mathbf{M}} + \frac{\gamma }{\beta \Delta t}{\mathbf{C}}_{{}} .$$
(52)

Computation of \({\mathbf{R}}_{t + \Delta t}:\)

$${\mathbf{R}}_{t + \Delta t} = {\mathbf{F}}_{t + \Delta t} + {\mathbf{M}}\left( {\frac{1}{{\beta \Delta t^{2} }}\varvec{\varGamma}_{t} + \frac{1}{\beta \Delta t}\varvec{\ddot{\varGamma }}_{t} + \left( {\frac{1}{2\beta } - 1} \right)\varvec{\ddot{\varGamma }}_{t} } \right).$$
(53)

Computation of \(\varvec{\varGamma}_{t + \Delta t}:\)

$${\bar{\mathbf{K}}}\,\varvec{\varGamma}_{t + \Delta t} = {\mathbf{R}}_{t + \Delta t} .$$
(54)

Computation of \(\varvec{\ddot{\varGamma }}_{t + \Delta t}:\)

$$\varvec{\ddot{\Gamma }}_{{t + \Delta t}} = \left[ {\left( {\varvec{\Gamma }_{{t + \Delta t}} - \varvec{\Gamma }_{t} - \Delta t\varvec{\dot{\Gamma }}_{t} } \right)\frac{1}{{\Delta t^{2} }} - \left( {\frac{1}{2} - \beta } \right)\varvec{\ddot{\Gamma }}_{t} } \right]\frac{1}{\beta },$$
(55)

Computation of \(\dot{\varvec{\varGamma }}_{t + \Delta t} :\)

$$\dot{\varvec{\varGamma }}_{t + \Delta t} = \dot{\varvec{\varGamma }}_{t} + \Delta t\left( {1 - \gamma } \right)\varvec{\ddot{\varGamma }}_{t} + \gamma \Delta t\varvec{\ddot{\varGamma }}_{t + \Delta t} .$$
(56)

Note that the Newmark parameters \(\beta\) and \(\gamma\) are chosen as \(\beta\) = 0.25 and \(\gamma\) = 0.5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallek, H., Jrad, H., Wali, M. et al. Nonlinear dynamic analysis of piezoelectric-bonded FG-CNTR composite structures using an improved FSDT theory. Engineering with Computers 37, 1389–1407 (2021). https://doi.org/10.1007/s00366-019-00891-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00891-1

Keywords

Navigation