Skip to main content
Log in

Nonlinear dynamics and stability of viscoelastic nanoplates considering residual surface stress and surface elasticity effects: a parametric excitation analysis

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The present study mainly investigates surface effect on nonlinear dynamic instability of viscoelastic nanoplates under parametric excitation. In fact, great attention is given to the influence of residual surface stress on nonlinear dynamic behavior of the system. To achieve this goal, the governing equation of motion is derived by modeling a nanoplate embedded on a visco-Pasternak foundation and then, applying surface effect relations, nonlocal elasticity and nonlinear von Karman theories and Hamilton’s principle, respectively. Galerkin technique and multiple time scales method are also used to solve the equation. A class of nonlinear Mathieu–Hill equation is established to determine the bifurcations and the regions of nonlinear dynamic instability. The numerical results are performed, while the emphasis is placed on investigating the effect of residual surface stress, visco-Pasternak foundation coefficients, and parametric excitation. It is shown how residual surface stress leads to high values of amplitude response. Finally, stable and unstable regions in dynamic instability of viscoelastic nanoplates are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\( E \) :

Young’s modulus

\( \sigma^{\prime} \) :

The classical stress tensor

\( \sigma_{xx} , \sigma_{yy} , \sigma_{xy} \) :

Normal stress components

\( \varepsilon_{xx} , \varepsilon_{yy} , \varepsilon_{xy} \) :

Strain vector

\( \sigma_{ij,j} \) :

Stress

\( f_{i} \) :

Body forces

\( u_{i}^{ \pm } \) :

Surface displacement

\( \tau_{i\alpha }^{ \pm } \) :

Surface stresses

\( \sigma \) :

Detuning parameter

\( e_{0} a \) :

Nonlocal parameter

\( \beta \) :

Nonlinearity coefficient

\( \eta \) :

Phase angle

\( F \) :

Force amplitude

\( D \) :

Bending stiffness

\( t \) :

Time

\( \rho \) :

Mass density

\( \omega_{0} \) :

Natural frequency

\( u_{1} , u_{2} \) :

In-plane displacements

\( u_{3} \) :

Transverse displacement

\( u_{0} , v_{0} \) :

Middle surface displacements

\( N_{ij} \) :

Resultant forces

\( M_{ij} \) :

Resultant moments

\( \psi \) :

Time-dependent function

\( l \) :

Length of the nanoplate

\( b \) :

Width of the nanoplate

\( E^{s} \) :

Surface elastic modulus

\( \tau_{0} \) :

Residual surface stress

\( \sigma_{i3}^{ \pm } \) :

Bulk stresses

\( \rho_{0}^{ \pm } \) :

Surface density

\( h \) :

Thickness of the nanoplate

\( c_{11} , c_{12} , c_{21} c_{22} , c_{66} \) :

Bulk elastic constants

\( T_{0} , T_{1} \) :

Time scales

\( c_{d} \) :

Viscous damping coefficient

\( \delta \) :

Parametric excitation amplitude

\( I_{0} , I_{2} \) :

The moment of inertia

\( I_{00} , I_{22} \) :

The moment of inertia with surface effect

\( k_{w} \) :

Winkler foundation coefficient

\( k_{G} \) :

Pasternak foundation coefficient

\( f \) :

Transverse load

\( \varOmega \) :

Frequency excitation

\( \varepsilon \) :

Scaling parameter

\( w \) :

Nanoplate deflection

\( \mu \) :

Damping coefficient

\( \sigma_{\alpha \beta }^{s} \) :

Surface stresses

\( \sigma_{\alpha \beta }^{0} \) :

Residual surface stresses without applied strain

References

  1. Costello BJ, Wenzel SW, White RM, Ward MD, Buttry DA (1991) Acoustic chemical sensors. Science 251(4999):1372–1373

    Google Scholar 

  2. Lang HP, Hegner M, Meyer E, Gerber C (2002) Nanomechanics from atomic resolution to molecular recognition based on atomic force microscopy technology. Nanotechnology 13(5):R29

    Google Scholar 

  3. Lavrik NV, Datskos PG (2003) Femtogram mass detection using photothermally actuated nanomechanical resonators. Appl Phys Lett 82(16):2697–2699

    Google Scholar 

  4. Ekinci KL, Huang XMH, Roukes ML (2004) Ultrasensitive nanoelectromechanical mass detection. Appl Phys Lett 84(22):4469–4471

    Google Scholar 

  5. Lavrik NV, Sepaniak MJ, Datskos PG (2004) Cantilever transducers as a platform for chemical and biological sensors. Rev Sci Instrum 75(7):2229–2253

    Google Scholar 

  6. Daulton TL, Bondi KS, Kelton KF (2010) Nanobeam diffraction fluctuation electron microscopy technique for structural characterization of disordered materials—application to Al88-xY7Fe5Tix metallic glasses. Ultramicroscopy 110(10):1279–1289

    Google Scholar 

  7. Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Eng Sci 10(3):233–248

    MathSciNet  MATH  Google Scholar 

  8. Eringen AC (1983) Theories of nonlocal plasticity. Int J Eng Sci 21(7):741–751

    MathSciNet  MATH  Google Scholar 

  9. Ghadiri M, Shafiei N, Akbarshahi A (2016) Influence of thermal and surface effects on vibration behavior of nonlocal rotating Timoshenko nanobeam. Appl Phys A 122(7):673

    Google Scholar 

  10. Rahmanian S, Ghazavi MR, Hosseini-Hashemi S (2019) On the numerical investigation of size and surface effects on nonlinear dynamics of a nanoresonator under electrostatic actuation. J Braz Soc Mech Sci Eng 41(1):16

    Google Scholar 

  11. Zhang YQ, Liu GR, Wang JS (2004) Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression. Phys Rev B 70(20):205430

    Google Scholar 

  12. Ebrahimi F, Hosseini SHS, Bayrami SS (2019) Nonlinear forced vibration of pre-stressed graphene sheets subjected to a mechanical shock: an analytical study. Thin-Walled Struct 141:293–307

    Google Scholar 

  13. Ghadiri M, Safi M (2017) Nonlinear vibration analysis of functionally graded nanobeam using homotopy perturbation method. Adv Appl Math Mech 9(1):144–156

    MathSciNet  Google Scholar 

  14. Ehyaei J, Akbarshahi A, Shafiei N (2017) Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam. Adv Nano Res 5(2):141–169

    Google Scholar 

  15. Ebrahimi F, Hosseini SHS (2016) Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates. J Therm Stress 39(5):606–625

    Google Scholar 

  16. Gurtin ME, Murdoch AI (1975) A continuum theory of elastic material surfaces. Arch Ration Mech Anal 57(4):291–323

    MathSciNet  MATH  Google Scholar 

  17. Gurtin ME, Murdoch AI (1978) Surface stress in solids. Int J Solids Struct 14(6):431–440

    MATH  Google Scholar 

  18. Wang KF, Wang BL (2012) Effects of residual surface stress and surface elasticity on the nonlinear free vibration of nanoscale plates. J Appl Phys 112(1):013520

    Google Scholar 

  19. Lu P, He LH, Lee HP, Lu C (2006) Thin plate theory including surface effects. Int J Solids Struct 43(16):4631–4647

    MATH  Google Scholar 

  20. Hosseini-Hashemi S, Fakher M, Nazemnezhad R (2013) Surface effects on free vibration analysis of nanobeams using nonlocal elasticity: a comparison between Euler–Bernoulli and Timoshenko. J Solid Mech 5(3):290–304

    Google Scholar 

  21. Hosseini-Hashemi S, Nahas I, Fakher M, Nazemnezhad R (2014) Nonlinear free vibration of piezoelectric nanobeams incorporating surface effects. Smart Mater Struct 23(3):035012

    MATH  Google Scholar 

  22. Ke LL, Wang YS, Wang ZD (2012) Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Compos Struct 94(6):2038–2047

    Google Scholar 

  23. Yan Z, Jiang LY (2012) Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints. Proc R Soc A Math Phys Eng Sci 468(2147):3458–3475

    MathSciNet  MATH  Google Scholar 

  24. Wang GF, Feng XQ (2009) Surface effects on buckling of nanowires under uniaxial compression. Appl Phys Lett 94(14):141913

    Google Scholar 

  25. Ebrahimi F, Barati MR (2018) Vibration analysis of size-dependent flexoelectric nanoplates incorporating surface and thermal effects. Mech Adv Mater Struct 25(7):611–621

    Google Scholar 

  26. Ebrahimi F, Barati MR (2019) Dynamic modeling of embedded nanoplate systems incorporating flexoelectricity and surface effects. Microsyst Technol 25(1):175–187

    Google Scholar 

  27. Ebrahimi F, Heidari E (2019) Surface effects on nonlinear vibration of embedded functionally graded nanoplates via higher order shear deformation plate theory. Mech Adv Mater Struct 26(8):671–699

    Google Scholar 

  28. Ebrahimi F, Hosseini SHS (2017) Surface effects on nonlinear dynamics of NEMS consisting of double-layered viscoelastic nanoplates. Eur Phys J Plus 132(4):172

    Google Scholar 

  29. Karimi M, Shahidi AR (2018) Buckling analysis of skew magneto-electro-thermo-elastic nanoplates considering surface energy layers and utilizing the Galerkin method. Appl Phys A 124(10):681

    Google Scholar 

  30. Liu S, Yu T, Van Lich L, Yin S, Bui TQ (2019) Size and surface effects on mechanical behavior of thin nanoplates incorporating microstructures using isogeometric analysis. Comput Struct 212:173–187

    Google Scholar 

  31. Lu L, Guo X, Zhao J (2019) A unified size-dependent plate model based on nonlocal strain gradient theory including surface effects. Appl Math Model 68:583–602

    MathSciNet  MATH  Google Scholar 

  32. Norouzzadeh A, Ansari R (2018) Isogeometric vibration analysis of functionally graded nanoplates with the consideration of nonlocal and surface effects. Thin-Walled Struct 127:354–372

    Google Scholar 

  33. Pang M, Li ZL, Zhang YQ (2018) Size-dependent transverse vibration of viscoelastic nanoplates including high-order surface stress effect. Phys B Condens Matter 545:94–98

    Google Scholar 

  34. Shaat M, Mahmoud FF, Gao XL, Faheem AF (2014) Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects. Int J Mech Sci 79:31–37

    Google Scholar 

  35. Yang Y, Zou J, Lee KY, Li XF (2018) Bending of circular nanoplates with consideration of surface effects. Meccanica 53(4–5):985–999

    MathSciNet  MATH  Google Scholar 

  36. Huang Y, Fu J, Liu A (2019) Dynamic instability of Euler–Bernoulli nanobeams subject to parametric excitation. Compos B Eng 164:226–234

    Google Scholar 

  37. Wang YZ, Wang YS, Ke LL (2016) Nonlinear vibration of carbon nanotube embedded in viscous elastic matrix under parametric excitation by nonlocal continuum theory. Physica E 83:195–200

    Google Scholar 

  38. Wang YZ (2017) Nonlinear internal resonance of double-walled nanobeams under parametric excitation by nonlocal continuum theory. Appl Math Model 48:621–634

    MathSciNet  MATH  Google Scholar 

  39. Li C, Lim CW, Yu JL (2010) Dynamics and stability of transverse vibrations of nonlocal nanobeams with a variable axial load. Smart Mater Struct 20(1):015023

    Google Scholar 

  40. Krylov S, Harari I, Cohen Y (2005) Stabilization of electrostatically actuated microstructures using parametric excitation. J Micromech Microeng 15(6):1188

    Google Scholar 

  41. Reddy JN (2013) An introduction to continuum mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  42. Reddy JN (2006) Theory and analysis of elastic plates and shells. CRC Press, USA

    Google Scholar 

  43. Zhao M, Qian C, Lee SWR, Tong P, Suemasu H, Zhang TY (2007) Electro-elastic analysis of piezoelectric laminated plates. Adv Compos Mater 16(1):63–81

    Google Scholar 

  44. Huang GY, Yu SW (2006) Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring. Phys Status Solidi 243(4):22–24

    Google Scholar 

  45. Murmu T, McCarthy MA, Adhikari S (2013) In-plane magnetic field affected transverse vibration of embedded single-layer graphene sheets using equivalent nonlocal elasticity approach. Compos Struct 96:57–63

    Google Scholar 

  46. Nayfeh AH, Mook DT (2008) Nonlinear oscillations. Wiley, USA

    MATH  Google Scholar 

  47. Ghadiri M, Hosseini SHS (2019) Parametric excitation of Euler–Bernoulli nanobeams under thermo-magneto-mechanical loads: nonlinear vibration and dynamic instability. Compos Part B Eng 106928

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Ebrahimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, F., Hosseini, S.H.S. Nonlinear dynamics and stability of viscoelastic nanoplates considering residual surface stress and surface elasticity effects: a parametric excitation analysis. Engineering with Computers 37, 1709–1722 (2021). https://doi.org/10.1007/s00366-019-00906-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00906-x

Keywords

Navigation