Skip to main content
Log in

Numerical simulations for the predator-prey model on surfaces with lumped mass method

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The predator-prey model is powerful mathematical tool to describe the dynamics of biological systems and promote research on biological populations. In this paper, we present a lumped mass finite element method for solving the predator-prey models on surfaces. The main purpose of the proposed method is to overcome the difficulty of the positivity preservation of the solutions. Based on positivity preservation results, we investigate the stabilities of semi-discrete and fully discrete approximations. Besides, numerical simulations are considered to illustrate the feasibility of the numerical method by convergence tests. Two classical phenomena of the predator-prey model are simulated on three different implicit surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Komeil N, Masoud S (2017) Dynamic analysis of fractional-order singular Holling type-II predator-prey system. Appl Math Comput 313:159–179

    MathSciNet  MATH  Google Scholar 

  2. Javidi M, Nyamoradi N (2014) Dynamic analysis of a fractional order prey-predator interaction with harvesting. Appl Math Model 37:20–21

    MathSciNet  MATH  Google Scholar 

  3. Diele F, Garvie MR, Trenchea C (2017) Numerical analysis of a first-order in time implicit-symplectic scheme for predator-prey systems. Comput Math Appl 74:948–961

    Article  MathSciNet  Google Scholar 

  4. Lotka A (1925) Elements of physical biology. Williams and Wilkins, Baltimore

    MATH  Google Scholar 

  5. Volterra V (1926) Variazioni e fluttuazioni del numero di individui in specie animali conviventi. Mem Acad Lincei 2:31–113

    MATH  Google Scholar 

  6. Murray J (2002) Mathematical biology I: an introduction. Springer, New York

    Book  Google Scholar 

  7. Holling CS (1959) Some characteristics of simple types of predation and parasitism. Can Entomol 91:385–398

    Article  Google Scholar 

  8. Sherratt JA, Eagan B, Lewis M (1997) Oscillations and chaos behind predator-prey invasion: mathematical artifact or ecological reality. Philos Trans Biol Sci 352:21–38

    Article  Google Scholar 

  9. Sherratt JA (2010) Periodic travelling waves in cyclic predator-prey systems. Ecol Lett 4:30–37

    Article  Google Scholar 

  10. Medvinsky AB, Petrovskii SV, Tikhonova IA (2002) Spatiotemporal complexity of plankton and fish dynamics. Siam Rev 44:311–370

    Article  MathSciNet  Google Scholar 

  11. Smoller J (1983) Shock waves and reaction-diffusion equations, Grundlehren der mathematischen Wissenschaften. Springer, New York

    Book  Google Scholar 

  12. Garvie MR, Burkardt J, Morgan J (2015) Simple finite element methods for approximating predator-prey dynamics in two dimensions using Matlab. Bull Math Biol 77:548–578

    Article  MathSciNet  Google Scholar 

  13. Chen CM, Thomée V (1985) The lumped mass finite element method for a parabolic problem. ANZIAM J 26:329–354

    MathSciNet  MATH  Google Scholar 

  14. Garvie MR (2007) Finite-difference schemes for reaction-diffusion equations modeling predator-prey interactions in MATLAB. Bull Math Biol 69:931–956

    Article  MathSciNet  Google Scholar 

  15. Dimitrov DT, Kojouharov HV (2008) Nonstandard finite-difference methods for predator-prey models with general functional response. Math Comput Simul 78:1–11

    Article  MathSciNet  Google Scholar 

  16. Bairagi N, Biswas M (2016) A predator-prey model with Beddington–DeAngelis functional response: a non-standard finite-difference method. J Differ Equ Appl 22:581–593

    Article  MathSciNet  Google Scholar 

  17. Liao W, Zhu J, Khaliq AQM (2002) An efficient high-order algorithm for solving systems of reaction-diffusion equations. Numer Methods Partial Differ Equ 18:340–354

    Article  MathSciNet  Google Scholar 

  18. Gu Y, Liao W, Zhu J (2003) An efficient high-order algorithm for solving systems of 3-D reaction-diffusion equations. J Comput Appl Math 155:1–17

    Article  MathSciNet  Google Scholar 

  19. Dziuk G, Elliott CM (2013) Finite element methods for surface PDEs. Acta Numer 22:289–396

    Article  MathSciNet  Google Scholar 

  20. Xiao X, Feng X, He Y (2019) Numerical simulations for the chemotaxis models on surfaces via a novel characteristic finite element method. Comput Math Appl 78:20–34

    Article  MathSciNet  Google Scholar 

  21. Xiao X, Feng X, Li Z (2019) A gradient recovery-based adaptive finite element method for convection–diffusion-reaction equations on surfaces. Int J Numer Methods Eng 120:901–917

    Article  MathSciNet  Google Scholar 

  22. Xiao X, Wang K, Feng X (2018) A lifted local Galerkin method for solving the reaction-diffusion equations on implicit surfaces. Comput Phys Commun 231:107–113

    Article  MathSciNet  Google Scholar 

  23. Shankar V, Wright GB, Kirby RM (2015) A radial basis function (RBF)-finite difference (FD) method for diffusion and reaction-diffusion equations on surfaces. J Sci Comput 63:745–768

    Article  MathSciNet  Google Scholar 

  24. Fuselier EJ, Wright GB (2013) A high-order kernel method for diffusion and reaction-diffusion equations on surfaces. J Sci Comput 56:535–565

    Article  MathSciNet  Google Scholar 

  25. Cécile P (2012) The orthogonal gradients method: a radial basis functions method for solving partial differential equations on arbitrary surfaces. J Comput Phys 231:4662–4675

    Article  MathSciNet  Google Scholar 

  26. Zhao F, Li J, Xiao X (2019) The characteristic RBF-FD method for the convection–diffusion-reaction equation on implicit surfaces. Numer Heat Transf Part A Appl 75:548–559

    Article  Google Scholar 

  27. Huang X, Xiao X, Zhao J, Feng X (2019) An efficient operator-splitting FEM-FCT algorithm for 3D chemotaxis models. Eng Comput 35:1–12

    Article  Google Scholar 

  28. Xiao X, Feng X, Yuan J (2018) The lumped mass finite element method for surface parabolic problems: error estimates and maximum principle. Comput Math Appl 76:488–507

    Article  MathSciNet  Google Scholar 

  29. Dziuk G (2007) Surface finite elements for parabolic equations. J Comput Math 25:385–407

    MathSciNet  Google Scholar 

  30. Thomée V (1984) Galerkin finite element methods for parabolic problems. Springer, Berlin

    MATH  Google Scholar 

  31. Brenner S, Scott R (2007) The mathematical theory of finite element methods. Springer Science and Business Media, New York

    Google Scholar 

  32. Dubois DM (1975) A model of patchiness for prey-predator plankton populations. Ecol Model 1:67–80

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and referees for their valuable comments and suggestions which helped us to improve the results of this article. This work is in parts supported by the NSF of China (No. U19A2079, No. 11671345, No. 61962056, No. 11971377), the Xinjiang Provincial University Research Foundation and the NSF of Shanxi Province (No. 2019JM-367).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinlong Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Xiao, X. & Feng, X. Numerical simulations for the predator-prey model on surfaces with lumped mass method. Engineering with Computers 37, 2047–2058 (2021). https://doi.org/10.1007/s00366-019-00929-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00929-4

Keywords

Mathematics Subject Classification

Navigation