Skip to main content
Log in

A novel Jacob spectral method for multi-dimensional weakly singular nonlinear Volterra integral equations with nonsmooth solutions

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The main purpose of this work is to develop a spectrally accurate collocation method for solving weakly singular integral equations of the second kind with nonsmooth solutions in high dimensions. The proposed spectral collocation method is based on a multivariate Jacobi approximation in the frequency space. The essential idea is to adopt a smoothing transformation for the spectral collocation method to circumvent the curse of singularity at the beginning of time. As such, the singularity of the numerical approximation can be tailored to that of the singular solutions. A rigorous convergence analysis is provided and confirmed by numerical tests with nonsmooth solutions in two dimensions. The results in this paper seem to be the first spectral approach with a theoretical justification for high-dimensional nonlinear weakly singular Volterra type equations with nonsmooth solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbaszadeh M, Dehghan M, Zhou Y (2020) Crank–Nicolson/Galerkin spectral method for solving two-dimensional time-space distributed-order weakly singular integro-partial differential equation. J Comput Appl Math. https://doi.org/10.1016/j.cam.2020.112739

    Article  MATH  Google Scholar 

  2. Brunner H (2004) Collocation methods for Volterra integral and related functional differential equations, vol 15. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Cao Y, Herdman T, Xu Y (2003) A hybrid collocation method for Volterra integral equations with weakly singular kernels. SIAM J Numer Anal 41(1):364–381

    Article  MathSciNet  Google Scholar 

  4. Diogo T, Lima P (2008) Superconvergence of collocation methods for a class of weakly singular Volterra integral equations. J Comput Appl Math 218(2):307–316

    Article  MathSciNet  Google Scholar 

  5. Dixit S, Singh OP, Kumar S (2012) A stable numerical inversion of generalized Abel’s integral equation. Appl Numer Math 62(5):567–579

    Article  MathSciNet  Google Scholar 

  6. Doha E, Abdelkawy M, Amin A, Lopes AM (2019) Shifted Jacobi–Gauss-collocation with convergence analysis for fractional integro-differential equations. Commun Nonlinear Sci Numer Simul 72:342–359

    Article  MathSciNet  Google Scholar 

  7. Doha E, Youssri Y, Zaky M (2019) Spectral solutions for differential and integral equations with varying coefficients using classical orthogonal polynomials. Bull Iran Math Soc 45(2):527–555

    Article  MathSciNet  Google Scholar 

  8. Ezz-Eldien SS, Doha EH (2019) Fast and precise spectral method for solving pantograph type Volterra integro-differential equations. Numer Algorithms 81(1):57–77

    Article  MathSciNet  Google Scholar 

  9. Faghih A, Mokhtary P (2020) An efficient formulation of Chebyshev tau method for constant coefficients systems of multi-order FDEs. J Sci Comput 82(6):1–25

    MathSciNet  MATH  Google Scholar 

  10. Hafez RM, Zaky MA (2019) High-order continuous Galerkin methods for multi-dimensional advection–reaction–diffusion problems. Eng Comput. https://doi.org/10.1007/s00366-019-00797-y

    Article  Google Scholar 

  11. Hafez RM, Zaky MA, Abdelkawy M (2020) Jacobi spectral Galerkin method for distributed-order fractional Rayleigh–Stokes problem for a generalized second grade fluid. Front Phys 7:240

    Article  Google Scholar 

  12. Huang C, Stynes M (2016) A spectral collocation method for a weakly singular Volterra integral equation of the second kind. Adv Comput Math 42(5):1015–1030

    Article  MathSciNet  Google Scholar 

  13. Huang C, Stynes M (2016) Spectral Galerkin methods for a weakly singular Volterra integral equation of the second kind. IMA J Numer Anal 37(3):1411–1436

    MathSciNet  MATH  Google Scholar 

  14. Huang C, Tang T, Zhang Z (2011) Supergeometric convergence of spectral collocation methods for weakly singular Volterra and Fredholm integral equations with smooth solutions. J Comput Math 29(6):698–719

    Article  MathSciNet  Google Scholar 

  15. Irfan N, Kumar S, Kapoor S (2014) Bernstein operational matrix approach for integro-differential equation arising in control theory. Nonlinear Eng 3(2):117–123

    Article  Google Scholar 

  16. Kopteva N, Stynes M (2015) An efficient collocation method for a Caputo two-point boundary value problem. BIT Numer Math 55(4):1105–1123

    Article  MathSciNet  Google Scholar 

  17. Kumar S, Kumar A, Momani S, Aldhaifallah M, Nisar KS (2019) Numerical solutions of nonlinear fractional model arising in the appearance of the stripe patterns in two-dimensional systems. Adv Differ Equ 2019(1):413

    Article  MathSciNet  Google Scholar 

  18. Lubich C (1983) Runge–Kutta theory for Volterra and Abel integral equations of the second kind. Math Comput 41(163):87–102

    Article  MathSciNet  Google Scholar 

  19. Macias-Diaz JE, Hendy HS, Markov NS (2019) A bounded numerical solver for a fractional Fitzhugh–Nagumo equation and its high-performance implementation. Eng Comput. https://doi.org/10.1007/s00366-019-00902-1

    Article  Google Scholar 

  20. Odibat Z, Kumar S (2019) A robust computational algorithm of homotopy asymptotic method for solving systems of fractional differential equations. J Comput Nonlinear Dyn 14(8):081004

    Article  Google Scholar 

  21. Shen J, Sheng C, Wang Z (2015) Generalized Jacobi spectral-Galerkin method for nonlinear Volterra integral equations with weakly singular kernels. J Math Study 48(4):315–329

    Article  MathSciNet  Google Scholar 

  22. Shen J, Tang T, Wang LL (2011) Spectral methods: algorithms, analysis and applications, vol 41. Springer Science & Business Media, New York

    Book  Google Scholar 

  23. Shen J, Wang LL (2010) Sparse spectral approximations of high-dimensional problems based on hyperbolic cross. SIAM J Numer Anal 48(3):1087–1109

    Article  MathSciNet  Google Scholar 

  24. Tang T (1992) Superconvergence of numerical solutions to weakly singular Volterra integro-differential equations. Numer Math 61(1):373–382

    Article  MathSciNet  Google Scholar 

  25. Tang T (1993) A note on collocation methods for Volterra integro-differential equations with weakly singular kernels. IMA J Numer Anal 13(1):93–99

    Article  MathSciNet  Google Scholar 

  26. Vainikko G (2006) Multidimensional weakly singular integral equations. Springer, New York

    MATH  Google Scholar 

  27. Wang Y, Ezz-Eldien SS, Aldraiweesh AA (2020) A new algorithm for the solution of nonlinear two-dimensional Volterra integro-differential equations of high-order. J Comput Appl Math 364:112–301

    MathSciNet  MATH  Google Scholar 

  28. Wu Q (2014) On graded meshes for weakly singular Volterra integral equations with oscillatory trigonometric kernels. J Comput Appl Math 263:370–376

    Article  MathSciNet  Google Scholar 

  29. Zaky MA (2018) An improved tau method for the multi-dimensional fractional Rayleigh–Stokes problem for a heated generalized second grade fluid. Comput Math Appl 75(7):2243–2258

    Article  MathSciNet  Google Scholar 

  30. Zaky MA (2019) Existence, uniqueness and numerical analysis of solutions of tempered fractional boundary value problems. Appl Numer Math 145:429–457

    Article  MathSciNet  Google Scholar 

  31. Zaky MA (2019) Recovery of high order accuracy in Jacobi spectral collocation methods for fractional terminal value problems with non-smooth solutions. J Comput Appl Math 357:103–122

    Article  MathSciNet  Google Scholar 

  32. Zaky MA, Ameen IG (2019) A priori error estimates of a Jacobi spectral method for nonlinear systems of fractional boundary value problems and related Volterra–Fredholm integral equations with smooth solutions. Numer Algorithms. https://doi.org/10.1007/s11075-019-00743-5

    Article  MATH  Google Scholar 

  33. Zaky MA, Ameen IG (2019) On the rate of convergence of spectral collocation methods for nonlinear multi-order fractional initial value problems. Comput Appl Math 38(3):144

    Article  MathSciNet  Google Scholar 

  34. Zaky MA, Hendy AS, Macias-Diaz JE (2020) Semi-implicit Galerkin–Legendre spectral schemes for nonlinear time-space fractional diffusion–reaction equations with smooth and nonsmooth solutions. J Sci Comput 82(13):1–27

    MathSciNet  MATH  Google Scholar 

  35. Zaky MA, Machado JT (2020) Multi-dimensional spectral tau methods for distributed-order fractional diffusion equations. Comput Math Appl 79(2):476–488

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. Zaky.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaky, M.A., Ameen, I.G. A novel Jacob spectral method for multi-dimensional weakly singular nonlinear Volterra integral equations with nonsmooth solutions. Engineering with Computers 37, 2623–2631 (2021). https://doi.org/10.1007/s00366-020-00953-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-00953-9

Keywords