Skip to main content
Log in

Dynamic stability of viscoelastic nanotubes conveying pulsating magnetic nanoflow under magnetic field

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this study, dynamic stability analysis of viscoelastic carbon nanotubes (CNTs) conveying pulsating magnetic nanoflow subjected to a longitudinal magnetic field is investigated. Based on Hamilton’s principle, the governing equations as well as boundary conditions, are extracted. The dynamic instability region and pulsation frequency of the CNTs are obtained through both the Galerkin technique and the Bolotin method. The effects of the nonlocal parameter gather with strain gradient parameter, Knudsen number, magnetic field, mass fluid ratio, fluid velocity, tension, gravity, viscoelastic characteristic of materials and boundary conditions on the dynamic instability of system are deliberated. The results indicate that increase in the pulsation frequency is caused by the decrease of nonlocal parameter and the increase of strain gradient parameter. Besides, it is revealed that by increasing Knudsen number the pulsation frequency decreases. Furthermore, the dynamic instability region and pulsation frequency of CNT can be enhanced due to the magnetic field effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Paidoussis MP, Sundararajan C (1975) Parametric and combination resonances of a pipe conveying pulsating fluid. J Appl Mech 42(4):780–784

    MATH  Google Scholar 

  2. Ariaratnam ST, Namachchivaya NS (1986) Dynamic stability of pipes conveying pulsating fluid. J Sound Vib 107(2):215–230

    MATH  Google Scholar 

  3. Noah ST, Hopkins GR (1980) Dynamic stability of elastically supported pipes conveying pulsating fluid. J Sound Vib 71(1):103–116

    MATH  Google Scholar 

  4. Jin JD, Song ZY (2005) Parametric resonances of supported pipes conveying pulsating fluid. J Fluids Struct 20(6):763–783

    Google Scholar 

  5. Panda LN, Kar RC (2007) Nonlinear dynamics of a pipe conveying pulsating fluid with parametric and internal resonances. Nonlinear Dyn 49(1–2):9–30

    MATH  Google Scholar 

  6. Panda LN, Kar RC (2008) Nonlinear dynamics of a pipe conveying pulsating fluid with combination, principal parametric and internal resonances. J Sound Vib 309(3–5):375–406

    Google Scholar 

  7. Ni Q, Zhang Z, Wang L, Qian Q, Tang M (2014) Nonlinear dynamics and synchronization of two coupled pipes conveying pulsating fluid. Acta Mech Solida Sin 27(2):162–171

    Google Scholar 

  8. Ni Q, Tang M, Wang Y, Wang L (2014) In-plane and out-of-plane dynamics of a curved pipe conveying pulsating fluid. Nonlinear Dyn 75(3):603–619

    MathSciNet  MATH  Google Scholar 

  9. Zhang YF, Yao MH, Zhang W, Wen BC (2017) Dynamical modeling and multi-pulse chaotic dynamics of cantilevered pipe conveying pulsating fluid in parametric resonance. Aerosp Sci Technol 68:441–453

    Google Scholar 

  10. Bahaadini R, Dashtbayazi MR, Hosseini M, Khalili-Parizi Z (2018) Stability analysis of composite thin-walled pipes conveying fluid. Ocean Eng 160:311–323

    Google Scholar 

  11. Bahaadini R, Saidi AR (2018) Stability analysis of thin-walled spinning reinforced pipes conveying fluid in thermal environment. Eur J Mech A/Sol 72:298–309

    MathSciNet  MATH  Google Scholar 

  12. Bahaadini R, Saidi AR, Hosseini M (2018) Flow-induced vibration and stability analysis of carbon nanotubes based on the nonlocal strain gradient Timoshenko beam theory. J Vib Control 25:203–218

    MathSciNet  Google Scholar 

  13. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56

    Google Scholar 

  14. Hummer G, Rasaiah JC, Noworyta JP (2001) Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414(6860):188

    Google Scholar 

  15. Gao Y, Bando Y (2002) Nanotechnology: carbon nanothermometer containing gallium. Nature 415(6872):599

    Google Scholar 

  16. Gibson RF, Ayorinde EO, Wen YF (2007) Vibrations of carbon nanotubes and their composites: a review. Compos Sci Technol 67(1):1–28

    Google Scholar 

  17. Mattia D, Gogotsi Y (2008) Review: static and dynamic behavior of liquids inside carbon nanotubes. Microfluid Nanofluid 5(3):289–305

    Google Scholar 

  18. Yoon J, Ru CQ, Mioduchowski A (2005) Vibration and instability of carbon nanotubes conveying fluid. Compos Sci Technol 65(9):1326–1336

    Google Scholar 

  19. Yoon J, Ru CQ, Mioduchowski A (2006) Flow-induced flutter instability of cantilever carbon nanotubes. Int J Solids Struct 43(11):3337–3349

    MATH  Google Scholar 

  20. Wang L, Hong Y, Dai H, Ni Q (2016) Natural frequency and stability tuning of cantilevered CNTs conveying fluid in magnetic field. Acta Mech Solida Sin 29(6):567–576

    Google Scholar 

  21. Askari H, Esmailzadeh E (2017) Forced vibration of fluid conveying carbon nanotubes considering thermal effect and nonlinear foundations. Compos B Eng 113:31–43

    Google Scholar 

  22. Ghavanloo E, Daneshmand F, Rafiei M (2010) Vibration and instability analysis of carbon nanotubes conveying fluid and resting on a linear viscoelastic Winkler foundation. Physica E 42(9):2218–2224

    Google Scholar 

  23. Karličić D, Kozić P, Pavlović R, Nešić N (2017) Dynamic stability of single-walled carbon nanotube embedded in a viscoelastic medium under the influence of the axially harmonic load. Compos Struct 162:227–243

    Google Scholar 

  24. Zhang Z, Liu Y, Li B (2014) Free vibration analysis of fluid-conveying carbon nanotube via wave method. Acta Mech Solida Sin 27(6):626–634

    Google Scholar 

  25. Bahaadini R, Saidi AR, Hosseini M (2018) Dynamic stability of fluid-conveying thin-walled rotating pipes reinforced with functionally graded carbon nanotubes. Acta Mech 229(12):5013–5029

    MathSciNet  MATH  Google Scholar 

  26. Bahaadini R, Hosseini M, Jamalpoor A (2017) Nonlocal and surface effects on the flutter instability of cantilevered nanotubes conveying fluid subjected to follower forces. Physica B 509:55–61

    Google Scholar 

  27. Hosseini M, Bahaadini R, Makkiabadi M (2018) Application of the Green function method to flow-thermoelastic forced vibration analysis of viscoelastic carbon nanotubes. Microfluid Nanofluid 22(1):6

    Google Scholar 

  28. Hosseini M, Sadeghi-Goughari M (2016) Vibration and instability analysis of nanotubes conveying fluid subjected to a longitudinal magnetic field. Appl Math Model 40(4):2560–2576

    MathSciNet  MATH  Google Scholar 

  29. Zhou S, Yu TJ, Yang XD, Zhang W (2017) Global dynamics of pipes conveying pulsating fluid in the supercritical regime. Int J Appl Mech 09(02):1750029

    Google Scholar 

  30. Dehghan M, Ebrahimi F, Vinyas M (2019) Wave dispersion characteristics of fluid-conveying magneto-electro-elastic nanotubes. Eng Comput. https://doi.org/10.1007/s00366-019-00790-5

    Article  Google Scholar 

  31. Bahaadini R, Hosseini M (2018) Flow-induced and mechanical stability of cantilever carbon nanotubes subjected to an axial compressive load. Appl Math Model 59:597–613

    MathSciNet  MATH  Google Scholar 

  32. Bahaadini R, Hosseini M (2016) Effects of nonlocal elasticity and slip condition on vibration and stability analysis of viscoelastic cantilever carbon nanotubes conveying fluid. Comput Mater Sci 114:151–159

    Google Scholar 

  33. Hosseini M, Bahaadini R, Jamali B (2016) Nonlocal instability of cantilever piezoelectric carbon nanotubes by considering surface effects subjected to axial flow. J Vib Control 24:1809–1825

    MathSciNet  Google Scholar 

  34. Liang F, Su Y (2013) Stability analysis of a single-walled carbon nanotube conveying pulsating and viscous fluid with nonlocal effect. Appl Math Model 37(10):6821–6828

    MathSciNet  MATH  Google Scholar 

  35. Azrar A, Azrar L, Aljinaidi A (2015) Numerical modeling of dynamic and parametric instabilities of single-walled carbon nanotubes conveying pulsating and viscous fluid. Compos Struct 125:127–143

    Google Scholar 

  36. Li YD, Yang YR (2017) Nonlinear vibration of slightly curved pipe with conveying pulsating fluid. Nonlinear Dyn 88(4):2513–2529

    Google Scholar 

  37. Kamali M, Mohamadhashemi V, Jalali A (2017) Parametric excitation analysis of a piezoelectric-nanotube conveying fluid under multi-physics field. Microsyst Technol 24(7):2871–2885

    Google Scholar 

  38. Lim CW, Zhang G, Reddy JN (2015) A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids 78:298–313

    MathSciNet  MATH  Google Scholar 

  39. Lu L, Guo X, Zhao J (2017) Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory. Int J Eng Sci 116:12–24

    MathSciNet  MATH  Google Scholar 

  40. Li L, Li X, Hu Y (2016) Free vibration analysis of nonlocal strain gradient beams made of functionally graded material. Int J Eng Sci 102:77–92

    MATH  Google Scholar 

  41. Imani Aria A, Biglari H (2018) Computational vibration and buckling analysis of microtubule bundles based on nonlocal strain gradient theory. Appl Math Comput 321:313–332

    MathSciNet  MATH  Google Scholar 

  42. Hosseini M, Bahaadini R (2016) Size dependent stability analysis of cantilever micro-pipes conveying fluid based on modified strain gradient theory. Int J Eng Sci 101:1–13

    Google Scholar 

  43. Atashafrooz M, Bahaadini R, Sheibani HR (2018) Nonlocal, strain gradient and surface effects on vibration and instability of nanotubes conveying nanoflow. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2018.1487611

    Article  Google Scholar 

  44. Ansari R, Hemmatnezhad M, Rezapour J (2011) The thermal effect on nonlinear oscillations of carbon nanotubes with arbitrary boundary conditions. Curr Appl Phys 11(3):692–697

    Google Scholar 

  45. Kiani K (2013) Longitudinal, transverse, and torsional vibrations and stabilities of axially moving single-walled carbon nanotubes. Curr Appl Phys 13(8):1651–1660

    Google Scholar 

  46. Akgöz B, Civalek Ö (2011) Application of strain gradient elasticity theory for buckling analysis of protein microtubules. Curr Appl Phys 11(5):1133–1138

    MATH  Google Scholar 

  47. Yaghmaei K, Rafii-Tabar H (2009) Observation of fluid layering and reverse motion in double-walled carbon nanotubes. Curr Appl Phys 9(6):1411–1422

    Google Scholar 

  48. Kiani K, Ghaffari H, Mehri B (2013) Application of elastically supported single-walled carbon nanotubes for sensing arbitrarily attached nano-objects. Curr Appl Phys 13(1):107–120

    Google Scholar 

  49. Ebrahimi F, Hosseini SHS (2019) Nonlinear vibration and dynamic instability analysis nanobeams under thermo-magneto-mechanical loads: a parametric excitation study. Eng Comput. https://doi.org/10.1007/s00366-019-00830-0

    Article  Google Scholar 

  50. Ghassabi M, Zarastvand MR, Talebitooti R (2019) Investigation of state vector computational solution on modeling of wave propagation through functionally graded nanocomposite doubly curved thick structures. Eng Comput. https://doi.org/10.1007/s00366-019-00773-6

    Article  MATH  Google Scholar 

  51. Ebrahimi F, Barati MR, Civalek Ö (2019) Application of Chebyshev–Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures. Eng Comput. https://doi.org/10.1007/s00366-019-00742-z

    Article  Google Scholar 

  52. Ebrahimi F, Habibi M, Safarpour H (2019) On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell. Eng Comput 35(4):1375–1389

    Google Scholar 

  53. Barretta R, Čanadija M, de Sciarra FM (2016) A higher-order Eringen model for Bernoulli–Euler nanobeams. Arch Appl Mech 86(3):483–495

    MATH  Google Scholar 

  54. Dindarloo MH, Li L (2019) Vibration analysis of carbon nanotubes reinforced isotropic doubly-curved nanoshells using nonlocal elasticity theory based on a new higher order shear deformation theory. Compos B Eng 175:107170

    Google Scholar 

  55. Demir Ç, Civalek Ö (2017) A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nano beams surrounded by an elastic matrix. Compos Struct 168:872–884

    Google Scholar 

  56. Akgöz B, Civalek Ö (2017) Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams. Compos B Eng 129:77–87

    Google Scholar 

  57. Rahmani O, Refaeinejad V, Hosseini S (2017) Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams. Steel Compos Struct 23(3):339–350

    Google Scholar 

  58. Numanoğlu HM, Akgöz B, Civalek Ö (2018) On dynamic analysis of nanorods. Int J Eng Sci 130:33–50

    Google Scholar 

  59. Civalek O, Demir C (2011) Buckling and bending analyses of cantilever carbon nanotubes using the euler-bernoulli beam theory based on non-local continuum model. Tech Note 651–661

  60. Rahmani O, Shokrnia M, Golmohammadi H, Hosseini SAH (2018) Dynamic response of a single-walled carbon nanotube under a moving harmonic load by considering modified nonlocal elasticity theory. Eur Phys J Plus 133(2):42

    Google Scholar 

  61. Mercan K, Civalek Ö (2017) Buckling analysis of Silicon carbide nanotubes (SiCNTs) with surface effect and nonlocal elasticity using the method of HDQ. Compos B Eng 114:34–45

    Google Scholar 

  62. Lu L, Zhu L, Guo X, Zhao J, Liu G (2019) A nonlocal strain gradient shell model incorporating surface effects for vibration analysis of functionally graded cylindrical nanoshells. Appl Math Mech 40(12):1695–1722

    MATH  Google Scholar 

  63. Lu L, Guo X, Zhao J (2019) A unified size-dependent plate model based on nonlocal strain gradient theory including surface effects. Appl Math Model 68:583–602

    MathSciNet  MATH  Google Scholar 

  64. Lu L, Guo X, Zhao J (2018) On the mechanics of Kirchhoff and Mindlin plates incorporating surface energy. Int J Eng Sci 124:24–40

    MathSciNet  MATH  Google Scholar 

  65. Demir Ç, Civalek Ö (2017) On the analysis of microbeams. Int J Eng Sci 121:14–33

    MathSciNet  MATH  Google Scholar 

  66. Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710

    Google Scholar 

  67. Païdoussis MP, Issid NT (1974) Dynamic stability of pipes conveying fluid. J Sound Vib 33(3):267–294

    Google Scholar 

  68. Andersson H (1995) An exact solution of the Navier-Stokes equations for magnetohydrodynamic flow. Acta Mech 113(1–4):241–244

    MathSciNet  MATH  Google Scholar 

  69. Rashidi V, Mirdamadi HR, Shirani E (2012) A novel model for vibrations of nanotubes conveying nanoflow. Comput Mater Sci 51(1):347–352

    Google Scholar 

  70. Bahaadini R, Hosseini M (2016) Nonlocal divergence and flutter instability analysis of embedded fluid-conveying carbon nanotube under magnetic field. Microfluid Nanofluid 20(7):108

    Google Scholar 

  71. Bahaadini R, Saidi AR, Hosseini M (2018) On dynamics of nanotubes conveying nanoflow. Int J Eng Sci 123:181–196

    MathSciNet  MATH  Google Scholar 

  72. Chen S-S (1971) Dynamic stability of tube conveying fluid. J Eng Mech Div 97(5):1469–1485

    Google Scholar 

  73. Bolotin VV (1965) The dynamic stability of elastic systems. Am J Phys 33(9):752

    Google Scholar 

  74. Apuzzo A, Barretta R, Faghidian S, Luciano R, de Sciarra FM (2018) Free vibrations of elastic beams by modified nonlocal strain gradient theory. Int J Eng Sci 133:99–108

    MathSciNet  MATH  Google Scholar 

  75. Soltani P, Taherian M, Farshidianfar A (2010) Vibration and instability of a viscous-fluid-conveying single-walled carbon nanotube embedded in a visco-elastic medium. J Phys D Appl Phys 43(42):425401

    Google Scholar 

  76. Batra R, Gupta S (2008) Wall thickness and radial breathing modes of single-walled carbon nanotubes. J Appl Mech 75(6):061010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Bahaadini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahaadini, R., Hosseini, M. & Amiri, M. Dynamic stability of viscoelastic nanotubes conveying pulsating magnetic nanoflow under magnetic field. Engineering with Computers 37, 2877–2889 (2021). https://doi.org/10.1007/s00366-020-00980-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-00980-6

Keywords

Navigation