Skip to main content
Log in

Numerical study of the variable-order fractional version of the nonlinear fourth-order 2D diffusion-wave equation via 2D Chebyshev wavelets

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this article, the 2D Chebyshev wavelets (CWs) are used for designing a proper procedure to solve the variable-order (VO) fractional version of the nonlinear fourth-order diffusion-wave (DW) equation. In the presented model, fractional derivatives are defined in the Caputo type. The \(\theta \)-weighted finite difference technique is utilized to approximate the VO time fractional derivative through a recursive algorithm. By expanding the unknown solution in terms of the 2D CWs and substituting in the recursive equation, a linear system of algebraic equation is obtained. The accuracy of the method is studied on some numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Samko SG (2013) Fractional integration and differentiation of variable order: an overview. Nonlinear Dyn 71:653–662

    Article  MathSciNet  Google Scholar 

  2. Atangana A, Baleanu D (2016) New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model. Therm Sci 20(2):763–769

    Article  Google Scholar 

  3. Sun HG, Chen W, Wei H, Chen YQ (2011) A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur Phys J Spec Top 193:185–192

    Article  Google Scholar 

  4. Roohi R, Heydari MH, Sun HG (2019) Numerical study of unsteady natural convection of variable-order fractional Jeffrey nanofluid over an oscillating plate in a porous medium involved with magnetic, chemical and heat absorption effects using Chebyshev cardinal functions. Eur Phys J Plus 134:535

    Article  Google Scholar 

  5. Roohi R, Heydari MH, Bavi O, Emdad H (2019) Chebyshev polynomials for generalized Couette flow of fractional Jeffrey nanofluid subjected to several thermochemical effects. Eng Comput. https://doi.org/10.1007/s00366-019-00843-9

    Article  Google Scholar 

  6. Atangana A, Mekkaoui T (2019) Trinition the complex number with two imaginary parts: fractal, chaos and fractional calculus. Chaos, Solitons Fractals 128:366–381

    Article  MathSciNet  Google Scholar 

  7. Atangana A (2020) Fractional discretization: the African’s tortoise walk. Chaos, Solitons Fractals 130:109399

    Article  MathSciNet  Google Scholar 

  8. Atangana A, Shafiq A (2019) Analysis of a new partial integro-differential equation with mixed fractional operators. Chaos, Solitons Fractals 127:257–271

    Article  MathSciNet  Google Scholar 

  9. Atangana A, Araz SI (2019) Differential and integral operators with constant fractional order and variable fractional dimension. Chaos, Solitons Fractals 127:226–243

    Article  MathSciNet  Google Scholar 

  10. Hosseininia M, Heydari MH, Maalek Ghaini FM, Avazzadeh Z (2018) Two-dimensional Legendre wavelets for solving variable-order fractional nonlinear advection–diffusion equation with variable coefficients. Int J Nonlinear Sci Num 19(7–8):793–802

    Article  MathSciNet  Google Scholar 

  11. Shekari Y, Tayebi A, Heydari MH (2019) A meshfree approach for solving 2D variable-order fractional nonlinear diffusion-wave equation. Comput Methods Appl Mech Eng 350:154–168

    Article  MathSciNet  Google Scholar 

  12. Hosseininia M, Heydari MH, Roohi R, Avazzadehd Z (2019) A computational wavelet method for variable-order fractional model of dual phase lag bioheat equation. J Comput Phys 395:1–18

    Article  MathSciNet  Google Scholar 

  13. Maiorino E, Bianchi FM, Livi L, Rizzi A, Sadeghian A (2017) Data-driven detrending of nonstationary fractal time series with echo state networks. Inf Sci 382:359–373

    Article  Google Scholar 

  14. Li M (2010) Fractal time series—a tutorial review. Math Probl Eng Article ID 157264, p 26

  15. Nigmatullin RR (1984) To the theoretical explanation of the universal response. Phys status solidi, B Basic Res 123(2):739–745

    Article  Google Scholar 

  16. Nigmatullin RR (1986) Realization of the generalized transfer equation in a medium with fractal geometry. Phys Status Solidi, B Basic Res 133(1):425–430

    Article  Google Scholar 

  17. Oldham KB, Spanier J (1974) The fractional calculus. Academic Press, NewYork

    MATH  Google Scholar 

  18. Zhang H, Jiang X (2019) Unconditionally convergent numerical method for the two-dimensional nonlinear time fractional diffusion-wave equation. Appl Numer Math 146:1–12

    Article  MathSciNet  Google Scholar 

  19. Ding H (2018) A high-order numerical algorithm for two-dimensional time-space tempered fractional diffusion-wave equation. Appl Numer Math 135:30–46

    Article  MathSciNet  Google Scholar 

  20. Heydari MH, Avazzadeh Z, Farzi Haromi M (2019) A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation. Appl Math Comput 341:215–228

    MathSciNet  MATH  Google Scholar 

  21. Dehghan M, Abbaszadeh M, Deng W (2017) Fourth-order numerical method for the space-time tempered fractional diffusion-wave equation. Appl Math Lett 73:120–127

    Article  MathSciNet  Google Scholar 

  22. Shivanian E (2016) Analysis of the time fractional 2-D diffusion-wave equation via moving least square (MLS) approximation. Int J Appl Comput Math 3(3):2447–2466

    Article  MathSciNet  Google Scholar 

  23. Heydari MH, Hooshmandasl MR, Cattani C (2020) Wavelets method for solving nonlinear stochastic Itô-Volterra integral equations. Georgian Math J 27(1):81–95

    Article  MathSciNet  Google Scholar 

  24. Soltani Sarvestani F, Heydari MH, Niknam A, Avazzadeh Z (2018) A wavelet approach for the multi-term time fractional diffusion-wave equation. Int J Comput Math 96(3):640–661

    Article  MathSciNet  Google Scholar 

  25. Hosseini S Gh, Mohammadi F (2011) A new operational matrix of derivative for Chebyshev wavelets and its applications in solving ordinary differential equations with non analytic solution. Appl Math Sci 5(51):2537–2548

    MathSciNet  MATH  Google Scholar 

  26. Jiaquan X, Zhibin Yao Y, Hailian G, Fuqiang Z, Dongyang L (2018) A two-dimensional Chebyshev wavelets approach for solving the Fokker–Planck equations of time and space fractional derivatives type with variable coefficients. Appl Math Sci 332:197–208

    MathSciNet  MATH  Google Scholar 

  27. Jiaquan X, Zhibin Yao Y, Hailian G, Fuqiang Z, Dongyang L (2019) Chebyshev wavelet method for numerical solutions of coupled burgers equation. Hacet J Math Stat 48(1):1–16

    MathSciNet  MATH  Google Scholar 

  28. Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  29. Hosseininia M, Heydari MH, Maalek Ghaini FM, Avazzadeh Z (2019) A wavelet method to solve nonlinear variable-order time fractional 2D Klein–Gordon equation. Comput Math Appl 78(12):3713–3730

    Article  MathSciNet  Google Scholar 

  30. Heydari MH, Hooshmandasl MR, Cattani C (2018) Wavelets method for solving nonlinear stochastic Ito–Volterra integral equations. Proceedings-Mathematical Sciences

  31. Canuto C, Hussaini M, Quarteroni A, Zang T (1998) Spectral methods in fluid dynamics. Springer, Berlin

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Avazzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseininia, M., Heydari, M.H. & Avazzadeh, Z. Numerical study of the variable-order fractional version of the nonlinear fourth-order 2D diffusion-wave equation via 2D Chebyshev wavelets. Engineering with Computers 37, 3319–3328 (2021). https://doi.org/10.1007/s00366-020-00995-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-00995-z

Keywords

Navigation