Skip to main content
Log in

Multi-objective modified heat transfer search for truss optimization

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this article, a modified version of heat transfer search (HTS) is proposed for multi-objective structural optimization. Contrary to the basic HTS optimizer which activates only one of the three phases of HTS at a time, multi-objective HTS simultaneously exploits the effect of all phases. The proposed modified optimizer is based on the principle of thermodynamics with design solutions being thought of molecules that interact with other molecules of the system itself, and simultaneously with the surrounding molecules through the three modes of heat transfer, namely conduction, convection, and radiation phases. To examine the effectiveness and feasibility of the proposed modification, five truss optimization benchmark problems are used for the performance test. Truss mass minimization and nodal displacement maximization are taken as objectives, while design variables are discrete. The new method along with several recent multi-objective meta-heuristics including ant system, ant colony system, symbiotic organism search, and HTS is used to solve the test problems and compared for the hypervolume and spacing-to-extent indicators. The results reveal that the improved version of HTS is superior to its previous version and the other optimizers. The statistical examination of this study has been performed by conducting Friedman’s rank. Results show the dominance of the proposed optimizer performance in comparison with the others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Angelo JS, Barbosa HJC, Bernardino HS (2012) Multi-objective ant colony approaches for structural optimization problems. In: Proceedings of the eleventh international conference on computational structures technology. https://doi.org/10.4203/ccp.99.66

  2. Angelo JS, Bernardino HS, Barbosa HJC (2015) Ant colony approaches for multiobjective structural optimization problems with a cardinality constraint. Adv Eng Softw 80(C):101–115. https://doi.org/10.1016/j.advengsoft.2014.09.015

    Article  Google Scholar 

  3. Acı Çİ, Gülcan H (2019) A modified dragonfly optimization optimizer for single-and multiobjective problems using Brownian motion. Comput Intell Neurosci. https://doi.org/10.1155/2019/687129

    Article  Google Scholar 

  4. Alba E, Dorronsoro B (2005) The exploration/exploitation tradeoff in dynamic cellular genetic optimizers. IEEE Trans Evol Comput 9(2):126–142. https://doi.org/10.1109/TEVC.2005.843751

    Article  Google Scholar 

  5. Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput Surv: CSUR 35(3):268–308. https://doi.org/10.1145/937503.937505

    Article  Google Scholar 

  6. Camp CV, Farshchin M (2014) Design of space trusses using modified teaching–learning based optimization. Eng Struct 62:87–97. https://doi.org/10.1016/j.engstruct.2014.01.020

    Article  Google Scholar 

  7. Coello CC, Lechuga MS (2002) MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 Congress on evolutionary computation. CEC’02 (Cat. No. 02TH8600), vol 2. IEEE, pp 1051–1056. https://doi.org/10.1109/cec.2002.1004388

  8. Che ZH, Chiang CJ (2010) A modified Pareto genetic optimizer for multi-objective build-to-order supply chain planning with product assembly. Adv Eng Softw 41(7–8):1011–1022. https://doi.org/10.1016/j.advengsoft.2010.04.001

    Article  MATH  Google Scholar 

  9. Cuevas E, Echavarría A, Ramírez-Ortegón MA (2014) An optimization optimizer inspired by the States of Matter that improves the balance between exploration and exploitation. Appl Intell 40(2):256–272. https://doi.org/10.1007/s10489-013-0458-0

    Article  Google Scholar 

  10. Chaudhari R, Vora JJ, Mani Prabu SS, Palani IA, Patel VK, Parikh DM, de Lacalle LNL (2019) Multi-response optimization of WEDM process parameters for machining of superelastic nitinol shape-memory alloy using a heat-transfer search optimizer. Materials 12(8):1277. https://doi.org/10.3390/ma12081277

    Article  Google Scholar 

  11. Cengel YA, Boles MA (2005) Thermodynamics: an engineering approach. McGraw-Hill, New York

    Google Scholar 

  12. Deb K, Gulati S (2001) Design of truss-structures for minimum weight using genetic optimizers. Finite Elem Anal Des 37(5):447–465. https://doi.org/10.1016/S0168-874X(00)00057-3

    Article  MATH  Google Scholar 

  13. Draa A (2015) On the performances of the flower pollination optimizer—qualitative and quantitative analyses. Appl Soft Comput 34:349–371. https://doi.org/10.1016/j.asoc.2015.05.015

    Article  Google Scholar 

  14. Degertekin SO (2012) Improved harmony search optimizers for sizing optimization of truss structures. Comput Struct 92:229–241. https://doi.org/10.1016/j.compstruc.2011.10.022

    Article  Google Scholar 

  15. Deb K, Pratap A, Agarwal S, Meyarivan TAMT (2002) A fast and elitist multiobjective genetic optimizer: NSGA-II. IEEE Trans Evol Comput 6(2):182–197. https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  16. Degertekin SO, Lamberti L, Hayalioglu MS (2017) Heat transfer search optimizer for sizing optimization of truss structures. Latin Am J Solids Struct 14(3):373–397. https://doi.org/10.1590/1679-78253297

    Article  Google Scholar 

  17. Fonseca CM, Fleming PJ (1993) Genetic optimizers for multiobjective optimization: formulation discussion and generalization. In: ICGA, vol 93, no. July, pp 416–423. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.48.9077&rep=rep1&type=pdf

  18. Gomes HM (2011) Truss optimization with dynamic constraints using a particle swarm optimizer. Expert Syst Appl 38(1):957–968. https://doi.org/10.1016/j.eswa.2010.07.086

    Article  Google Scholar 

  19. Gandomi AH, Talatahari S, Yang XS, Deb S (2013) Design optimization of truss structures using cuckoo search optimizer. Struct Des Tall Spec Build 22(17):1330–1349. https://doi.org/10.1002/tal.1033

    Article  Google Scholar 

  20. Gholizadeh S, Poorhoseini H (2016) Seismic layout optimization of steel braced frames by an improved dolphin echolocation optimizer. Struct Multidiscip Optim 54(4):1011–1029. https://doi.org/10.1007/s00158-016-1461-y

    Article  Google Scholar 

  21. Gholizadeh S, Milany A (2018) An improved fireworks optimizer for discrete sizing optimization of steel skeletal structures. Eng Optim 50(11):1829–1849. https://doi.org/10.1080/0305215X.2017.1417402

    Article  MathSciNet  Google Scholar 

  22. Hazra A, Das S, Basu M (2018) Heat transfer search optimizer for non-convex economic dispatch problems. J Inst Eng (India) Ser B 99(3):273–280. https://doi.org/10.1007/s40031-018-0320-1

    Article  Google Scholar 

  23. Kumar S, Tejani GG, Mirjalili S (2019) Modified symbiotic organisms search for structural optimization. Eng Comput 35(4):1269–1296. https://doi.org/10.1007/s00366-018-0662-y

    Article  Google Scholar 

  24. Kaveh A, Khayatazad M (2013) Ray optimization for size and shape optimization of truss structures. Comput Struct 117:82–94. https://doi.org/10.1016/j.compstruc.2012.12.010

    Article  Google Scholar 

  25. Kawamura H, Ohmori H, Kito N (2002) Truss topology optimization by a modified genetic optimizer. Struct Multidiscip Optim 23(6):467–473. https://doi.org/10.1007/s00158-002-0208-0

    Article  Google Scholar 

  26. Kaveh A, Zolghadr A (2017) Truss shape and size optimization with frequency constraints using tug of war optimization. Asian J Civ Eng 7(2):311–333

    Google Scholar 

  27. Lamberti L (2008) An efficient simulated annealing optimizer for design optimization of truss structures. Comput Struct 86(19–20):1936–1953. https://doi.org/10.1016/j.compstruc.2008.02.004

    Article  Google Scholar 

  28. Luh GC, Chueh CH (2004) Multi-objective optimal design of truss structure with immune optimizer. Comput Struct 82(11–12):829–844. https://doi.org/10.1016/j.compstruc.2004.03.003

    Article  Google Scholar 

  29. Marler RT, Arora JS (2004) Survey of multi-objective optimization methods for engineering. Struct Multidiscip Optim 26(6):369–395. https://doi.org/10.1007/s00158-003-0368-6

    Article  MathSciNet  MATH  Google Scholar 

  30. Meng X, Chang J, Wang X, Wang Y (2019) Multi-objective hydropower station operation using an improved cuckoo search optimizer. Energy 168:425–439. https://doi.org/10.1016/j.energy.2018.11.096

    Article  Google Scholar 

  31. Mirjalili S (2016) SCA: a sine-cosine optimizer for solving optimization problems. Knowl Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  32. Maharana D, Kotecha P (2016a) Simultaneous heat transfer search for computationally expensive numerical optimization. In: 2016 IEEE congress on evolutionary computation (CEC). IEEE, pp 2982–2988. https://doi.org/10.1109/cec.2016.7744166

  33. Maharana D, Kotecha P (2016b) Simultaneous heat transfer search for single objective real-parameter numerical optimization problem. In: 2016 IEEE region 10 conference (TENCON). IEEE, pp 2138–2141. https://doi.org/10.1109/tencon.2016.7848404

  34. Narayanan S, Azarm S (1999) On improving multiobjective genetic optimizers for design optimization. Struct Optim 18(2–3):146–155. https://doi.org/10.1007/BF01195989

    Article  Google Scholar 

  35. Panagant N, Bureerat S (2018) Truss topology, shape and sizing optimization by fully stressed design based on hybrid grey wolf optimization and adaptive differential evolution. Eng Optim 50(10):1645–1661. https://doi.org/10.1080/0305215X.2017.1417400

    Article  MathSciNet  Google Scholar 

  36. Panda A, Pani S (2016) A symbiotic organisms search optimizer with adaptive penalty function to solve multi-objective constrained optimization problems. Appl Soft Comput 46:344–360. https://doi.org/10.1016/j.asoc.2016.04.030

    Article  Google Scholar 

  37. Patel VK, Savsani VJ (2015) Heat transfer search (HTS): a novel optimization optimizer. Inf Sci 324:217–246. https://doi.org/10.1016/j.ins.2015.06.044

    Article  Google Scholar 

  38. Prajapati P, Patel V (2019) Multi-objective optimization of CuO based organic Rankine cycle operated using R245ca. In: E3S Web of conferences, vol 116. EDP Sciences, p 00062. https://doi.org/10.1051/e3sconf/201911600062

  39. Rao RV, Keesari HS, Oclon P, Taler J (2019) Improved multi-objective Jaya optimization optimizer for a solar dish Stirling engine. J Renew Sustain Energy 11(2):025903. https://doi.org/10.1063/1.5083142

    Article  Google Scholar 

  40. Rao SS, Freiheit TI (1991) A modified game theory approach to multiobjective optimization. ASME J Mech Des 113(3):286–291. https://doi.org/10.1115/1.2912781

    Article  Google Scholar 

  41. Raja BD, Patel V, Jhala RL (2017) Thermal design and optimization of fin-and-tube heat exchanger using heat transfer search optimizer. Therm Sci Eng Progress 4:45–57. https://doi.org/10.1016/j.tsep.2017.08.004

    Article  Google Scholar 

  42. Raja BD, Jhala RL, Patel V (2018) Thermal-hydraulic optimization of plate heat exchanger: a multi-objective approach. Int J Therm Sci 124:522–535. https://doi.org/10.1016/j.ijthermalsci.2017.10.035

    Article  Google Scholar 

  43. Sonmez M (2011) Artificial Bee Colony optimizer for optimization of truss structures. Appl Soft Comput 11(2):2406–2418. https://doi.org/10.1016/j.asoc.2010.09.003

    Article  Google Scholar 

  44. Sierra MR, Coello CAC (2005) Improving PSO-based multi-objective optimization using crowding, mutation and ε-dominance. In: International conference on evolutionary multi-criterion optimization. Springer, Berlin, pp 505–519. https://doi.org/10.1007/978-3-540-31880-4_35

  45. Sato T, Watanabe K, Igarashi H (2014) A modified immune optimizer with spatial filtering for multiobjective topology optimisation of electromagnetic devices. Int J Comput Math Electr Electron Eng: COMPEL 33(3):821–833. https://doi.org/10.1108/COMPEL-09-2012-0174

    Article  Google Scholar 

  46. Savsani P, Tawhid MA (2018) Discrete heat transfer search for solving travelling salesman problem. Math Found Comput 1(3):265–280. https://doi.org/10.3934/mfc.2018012

    Article  Google Scholar 

  47. Savsani V, Patel V, Gadhvi B, Tawhid M (2017) Pareto optimization of a half car passive suspension model using a novel multiobjective heat transfer search optimizer. Model Simul Eng. https://doi.org/10.1155/2017/2034907

    Article  Google Scholar 

  48. Shah P, Saliya P, Raja B, Patel V (2019) A multiobjective thermodynamic optimization of a nanoscale Stirling engine operated with Maxwell-Boltzmann gas. Heat Transf Asian Res. https://doi.org/10.1002/htj.21463

    Article  Google Scholar 

  49. Schott JR (1995) Fault tolerant design using single and multicriteria genetic optimizer optimization (No. AFIT/CI/CIA-95-039). Air force inst of tech Wright–Patterson afb OH. https://apps.dtic.mil/dtic/tr/fulltext/u2/a296310.pdf

  50. Tawhid MA, Savsani V (2018) ∈-Constraint heat transfer search (∈-HTS) optimizer for solving multi-objective engineering design problems. J Comput Des Eng 5(1):104–119. https://doi.org/10.1016/j.jcde.2017.06.003

    Article  Google Scholar 

  51. Tejani GG, Savsani VJ, Patel VK (2016) Adaptive symbiotic organisms search (SOS) optimizer for structural design optimization. J Comput Des Eng 3(3):226–249. https://doi.org/10.1016/j.jcde.2016.02.003

    Article  Google Scholar 

  52. Tejani GG, Savsani VJ, Bureerat S, Patel VK (2017) Topology and size optimization of trusses with static and dynamic bounds by modified symbiotic organisms search. J Comput Civ Eng 32(2):04017085. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000741

    Article  Google Scholar 

  53. Tejani G, Savsani V, Patel V (2017) Modified sub-population based heat transfer search optimizer for structural optimization. Int J Appl Metaheuristic Comput: IJAMC 8(3):1–23. https://doi.org/10.4018/IJAMC.2017070101

    Article  Google Scholar 

  54. Tejani GG, Savsani VJ, Patel VK, Mirjalili S (2017) Truss optimization with natural frequency bounds using improved symbiotic organisms search. Knowl Based Syst. https://doi.org/10.1016/j.knosys.2017.12.012

    Article  Google Scholar 

  55. Tejani GG, Pholdee N, Bureerat S, Prayogo D (2018) Multiobjective adaptive symbiotic organisms search for truss optimization problems. Knowl Based Syst 161:398–414. https://doi.org/10.1016/j.knosys.2018.08.005

    Article  Google Scholar 

  56. Tejani GG, Kumar S, Gandomi AH (2019) Multi-objective heat transfer search optimizer for truss optimization. Eng Comput. https://doi.org/10.1007/s00366-019-00846-6

    Article  Google Scholar 

  57. Tejani GG, Savsani VJ, Bureerat S, Patel VK, Savsani P (2019) Topology optimization of truss subjected to static and dynamic constraints by integrating simulated annealing into passing vehicle search optimizers. Eng Comput 35(2):499–517. https://doi.org/10.1007/s00366-018-0612-8

    Article  Google Scholar 

  58. Tejani GG, Pholdee N, Bureerat S, Prayogo D, Gandomi AH (2019) Structural optimization using multi-objective modified adaptive symbiotic organisms search. Expert Syst Appl 125:425–441. https://doi.org/10.1016/j.eswa.2019.01.068

    Article  Google Scholar 

  59. Tejani GG, Savsani VJ, Patel VK, Mirjalili S (2019) An improved heat transfer search optimizer for unconstrained optimization problems. J Comput Des Eng 6(1):13–32. https://doi.org/10.1016/j.jcde.2018.04.003

    Article  Google Scholar 

  60. Yang XS (2010) Engineering optimization: an introduction with metaheuristic applications. Wiley, Hoboken

    Book  Google Scholar 

  61. Yang XS, Deb S, Fong S (2014) Metaheuristic optimizers: optimal balance of intensification and diversification. Appl Math Inf Sci 8(3):977. https://doi.org/10.12785/amis/080306

    Article  Google Scholar 

  62. Zhu H, Hu YM, Zhu WD, Fan W, Zhou BW (2020) Multi-objective design optimization of an engine accessory drive system with a robustness analysis. Appl Math Model 77:1564–1581. https://doi.org/10.1016/j.apm.2019.09.016

    Article  MathSciNet  MATH  Google Scholar 

  63. Zhang W, Wang Y, Yang Y, Gen M (2019) Hybrid multiobjective evolutionary optimizer based on differential evolution for flow shop scheduling problems. Comput Ind Eng 130:661–670. https://doi.org/10.1016/j.cie.2019.03.019

    Article  Google Scholar 

  64. Zhou J, Yao X (2017) A hybrid approach combining modified artificial bee colony and cuckoo search optimizers for multi-objective cloud manufacturing service composition. Int J Prod Res 55(16):4765–4784. https://doi.org/10.1080/00207543.2017.1292064

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support from the Thailand Research Fund (RTA6180010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghanshyam G. Tejani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Tejani, G.G., Pholdee, N. et al. Multi-objective modified heat transfer search for truss optimization. Engineering with Computers 37, 3439–3454 (2021). https://doi.org/10.1007/s00366-020-01010-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01010-1

Keywords

Navigation