Abstract
Finite element analysis of huge and/or complicated structures often requires long times and large computational expenses. Superelements are huge elements that exploit the deformation theory of a specific problem to provide the capability of discretizing the problem with minimum number of elements. They are employed to reduce the computational cost while retaining the accuracy of results in FEM analysis of engineering problems. In this research, a new shell superelement is presented to study linear/nonlinear static and free vibration analysis of spherical structures with partial or full spherical geometries that exist in many industrial applications. Furthermore, this study investigates the effects of changing the superelement size and its number of nodes on solution accuracy. The governing equations of composite spherical shells are derived based on the first-order shear deformation theory and considering large deformations. For solving the nonlinear governing equations, the tangent stiffness matrix has been extracted and the Newton–Raphson method is employed. The capability of the presented shell superelement is investigated in several problems under linear/nonlinear static and free vibration analysis. The results acquired by the presented shell superelements are compared with available results in the literature and conventional shell elements in a commercial software. Results comparisons reveal high accuracy at a reduced computational cost in the superelement model.















Similar content being viewed by others

References
Habibi M et al (2017) Determination of forming limit diagram using two modified finite element models. Amirkabir J Mech Eng 48:379–388. https://doi.org/10.22060/mej.2016.664
Kung E, Farahmand M, Gupta A (2019) A hybrid experimental–computational modeling framework for cardiovascular device testing. J Biomech Eng. https://doi.org/10.1115/1.4042665
Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195. https://doi.org/10.1016/j.cma.2004.10.008
Nguyen LB, Thai CH, Nguyen-Xuan H (2016) A generalized unconstrained theory and isogeometric finite element analysis based on Bézier extraction for laminated composite plates. Eng Comput 32:457–475. https://doi.org/10.1007/s00366-015-0426-x
Shamloofard M, Assempour A (2019) Development of an inverse isogeometric methodology and its application in sheet metal forming process. Appl Math Model 73:266–284. https://doi.org/10.1016/j.apm.2019.03.042
Koko TS, Olson MD (1991) Non-linear analysis of stiffened plates using super elements. Int J Numer Methods Eng 31:319–343. https://doi.org/10.1002/nme.1620310208
Koko TS, Olson MD (1991) Nonlinear transient response of stiffened plates to air blast loading by a superelement approach. Comput Methods Appl Mech Eng 90:737–760. https://doi.org/10.1016/0045-7825(91)90182-6
Koko TS, Olson MD (1992) Vibration analysis of stiffened plates by super elements. J Sound Vib 158:149–167. https://doi.org/10.1016/0022-460X(92)90670-S
Jiang J, Olson MD (1994) Nonlinear analysis of orthogonally stiffened cylindrical shells by a super element approach. Finite Elem Anal Des 18:99–110. https://doi.org/10.1016/0168-874X(94)90094-9
Ahmadian MT, Zangeneh M (2003) Application of super elements to free vibration analysis of laminated stiffened plates. J Sound Vib 259:1243–1252. https://doi.org/10.1006/jsvi.2002.5288
Ahmadian MT, Bonakdar M (2008) A new cylindrical element formulation and its application to structural analysis of laminated hollow cylinders. Finite Elem Anal Des 44:617–630. https://doi.org/10.1016/j.finel.2008.02.003
Ahmadian MT, Movahhedy MR, Rezaei MM (2011) Design and application of a new tapered superelement for analysis of revolving geometries. Finite Elem Anal Des 47:1242–1252. https://doi.org/10.1016/j.finel.2011.06.002
Torabi J, Ansari R (2018) A higher-order isoparametric superelement for free vibration analysis of functionally graded shells of revolution. Thin Walled Struct 133:169–179. https://doi.org/10.1016/j.tws.2018.09.040
Sarvi MN, Ahmadian MT (2012) Design and implementation of a new spherical super element in structural analysis. Appl Math Comput 218:7546–7561. https://doi.org/10.1016/j.amc.2012.01.022
Shamloofard M, Movahhedy MR (2015) Development of thermo-elastic tapered and spherical superelements. Appl Math Comput 265:380–399. https://doi.org/10.1016/j.amc.2015.04.106
Dhari RS, Patel NP, Wang H, Hazell PJ (2019) Progressive damage modeling and optimization of fibrous composites under ballistic impact loading. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2019.1655688
Habibi M et al (2019) Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2019.1697932
Gautham BP, Ganesan N (1997) Free vibration characteristics of isotropic and laminated orthotropic spherical caps. J Sound Vib 204:17–40. https://doi.org/10.1006/jsvi.1997.0904
Ram KSS, Babu TS (2002) Free vibration of composite spherical shell cap with and without a cutout. Comput Struct 80:1749–1756. https://doi.org/10.1016/S0045-7949(02)00210-9
Pang F, Li H, Cuib J, Du Y, Gao C (2019) Application of flügge thin shell theory to the solution of free vibration behaviors for spherical–cylindrical–spherical shell: a unified formulation. Eur J Mech A Solids 74:381–393. https://doi.org/10.1016/j.euromechsol.2018.12.003
Hosseini-Hashemi Sh, Atashipour SR, Fadaee M, Girjammer UA (2012) An exact closed-form procedure for free vibration analysis of laminated spherical shell panels based on Sanders theory. Arch Appl Mech 82:985–1002. https://doi.org/10.1007/s00419-011-0606-0
Qu Y, Long X, Wu S, Meng G (2013) A unified formulation for vibration analysis of composite laminated shells of revolution including shear deformation and rotary inertia. Compos Struct 98:169–191. https://doi.org/10.1016/j.compstruct.2012.11.001
Singh VK, Panda SK (2014) Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels. Thin Walled Struct 85:341–349. https://doi.org/10.1016/j.tws.2014.09.003
Li H, Pang F, Miao X, Gao S, Liu F (2019) A semi analytical method for free vibration analysis of composite laminated cylindrical and spherical shells with complex boundary conditions. Thin Walled Struct 136:200–220. https://doi.org/10.1016/j.tws.2018.12.009
Sahoo SS, Panda SK, Mahapatra TR (2016) Static, free vibration and transient response of laminated composite curved shallow panel—an experimental approach. Eur J Mech A Solids 59:95–113. https://doi.org/10.1016/j.euromechsol.2016.03.014
Mahapatra TR, Panda SK (2016) Nonlinear free vibration analysis of laminated composite spherical shell panel under elevated hygrothermal environment: a micromechanical approach. Aerosp Sci Technol 49:276–288. https://doi.org/10.1016/j.ast.2015.12.018
Tornabene F, Fantuzzi N, Bacciocchi M, Neves AMA, Ferreira AJM (2016) MLSDQ based on RBFs for the free vibrations of laminated composite doubly-curved shells. Compos B Eng 99:30–47. https://doi.org/10.1016/j.compositesb.2016.05.049
Li H, Pang F, Wang X, Du Y, Chen H (2018) Free vibration analysis for composite laminated doubly-curved shells of revolution by a semi analytical method. Compos Struct 201:86–111. https://doi.org/10.1016/j.compstruct.2018.05.143
Pang F, Li H, Wang X, Miao X, Li S (2018) A semi analytical method for the free vibration of doubly-curved shells of revolution. Comput Math Appl 75–9:3249–3268. https://doi.org/10.1016/j.tws.2018.03.026
Alwar RS, Narasimhan MC (1990) Application of Chebyshev polynomials to the analysis of laminated axisymmetric spherical shells. Compos Struct 15:215–237
Lal A, Singh BN, Anand S (2011) Nonlinear bending response of laminated composite spherical shell panel with system randomness subjected to hygro-thermo-mechanical loading. Int J Mech Sci 53:855–866. https://doi.org/10.1016/j.ijmecsci.2011.07.008
Ferreira AJM, Carrera E, Cinefra M, Roque CMC (2011) Analysis of laminated doubly-curved shells by a layerwise theory and radial basis functions collocation, accounting for through-the-thickness deformations. Comput Mech 48:13–25. https://doi.org/10.1007/s00466-011-0579-4
Mahapatra TR, Panda SK, Kar VR (2016) Geometrically nonlinear flexural analysis of hygro-thermo-elastic laminated composite doubly curved shell panel. Int J Mech Mater Des 12:153–171. https://doi.org/10.1007/s10999-015-9299-9
Tornabene F, Brischetto S (2018) 3D capability of refined GDQ models for the bending analysis of composite and sandwich plates, spherical and doubly-curved shells. Thin Walled Struct 129:94–124. https://doi.org/10.1016/j.tws.2018.03.021
Katariya PV, Hirwani CK, Panda SK (2019) Geometrically nonlinear deflection and stress analysis of skew sandwich shell panel using higher-order theory. Eng Comput 35:467–485. https://doi.org/10.1007/s00366-018-0609-3
Katariya PV, Panda SK (2019) Numerical evaluation of transient deflection and frequency responses of sandwich shell structure using higher order theory and different mechanical loadings. Eng Comput 35:1009–1026. https://doi.org/10.1007/s00366-018-0646-y
Hirwani CK, Panda SK (2019) Nonlinear transient analysis of delaminated curved composite structure under blast/pulse load. Eng Comput 1:1–14. https://doi.org/10.1007/s00366-019-00757-6
Sayyad S, Ghugal YM (2019) Static and free vibration analysis of laminated composite and sandwich spherical shells using a generalized higher-order shell theory. Compos Struct 129:129–146. https://doi.org/10.1016/j.compstruct.2019.03.054
Evkin Y (2019) Composite spherical shells at large deflections. Asymptotic analysis and applications. Compos Struct. https://doi.org/10.1016/j.compstruct.2019.111577
Reddy JN (2003) Mechanics of laminated composites plates and shells. CRC Press, New York
Sanders JL (1959) An improved first-approximation theory for thin shells. NASA TR-24
Shin DK (1997) Large amplitude free vibration behavior of doubly curved shallow open shells with simply-supported edges. Comput Struct 62–1:35–49. https://doi.org/10.1016/S0045-7949(96)00215-5
Reddy JN (2006) Theory and analysis of elastic plates and shells, 2nd edn. CRC Press, New York
Hoppmann WH, Baronet CN (1963) A study of the vibrations of shallow spherical shells. J Appl Mech 30:329–334. https://doi.org/10.1115/1.3636557
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix 1
\(\left[ {B_{m} } \right],\left[ {B_{b} } \right],\left[ {B_{s} } \right]\) and \(\left[ {B_{NL} } \right]\) are given as the following equations:
Appendix 2
\(K_{1} ,K_{2} ,K_{3} , \ldots ,K_{10}\) are specified as the following equations:
In the above equation, \(\left[ {\tilde{B}_{NL} } \right]\) is written as:
Appendix 3
This research uses the Newton–Raphson algorithm for solving the nonlinear governing equation as follows:
where \(K^{t}\) is the tangent stiffness matrix which is expressed as follows:
where
Nonzero terms of \(\left( {B_{NL} } \right)_{pi,j}\) and \(\left( {\tilde{B}_{NL} } \right)_{pi,j}\) matrices are defined as the following equations:
where
Appendix 4
Shape functions of the spherical shell superelement including pole in the local coordinate system are expressed as follows:
-
(a)
\(M = 3, N = 16\):
$$\begin{gathered} \begin{array}{*{20}c} {N_{i} = \frac{{\gamma \left( {\gamma - 1} \right)}}{2}} & {i = 1} \\ \end{array} \hfill \\ \begin{array}{*{20}l} {N_{{2,i}} = \frac{{\left( {1 - \gamma } \right)\left( {1 + \gamma } \right)}}{4} \times \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \hfill & {} \hfill \\ {\quad \times \left[ {1 + \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right]} \hfill & {i = 1 - 16} \hfill \\ {\quad \times \left[ {1 + \cos \left( {2\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right]} \hfill & {} \hfill \\ {\quad \times \left[ {1 + \cos \left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right]} \hfill & {} \hfill \\ \end{array} \hfill \\ \begin{array}{*{20}l} {N_{{3,i}} = \frac{{\gamma \left( {\gamma + 1} \right)}}{8} \times \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \hfill & {} \hfill \\ {\quad \times \left[ {1 + \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right]} \hfill & {i = 1 - 16} \hfill \\ {\quad \times \left[ {1 + \cos \left( {2\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right]} \hfill & {} \hfill \\ {\quad \times \left[ {1 + \cos \left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right]} \hfill & {} \hfill \\ \end{array} \hfill \\ \end{gathered}$$(31) -
(b)
\(M = 2, N = 16\):
$$\begin{gathered} \begin{array}{*{20}c} {N_{i} = \frac{{\left( {1 - \lambda } \right)}}{2}} & {i = 1} \\ \end{array} \hfill \\ \begin{array}{*{20}l} {N_{{2,i}} = \frac{{\left( {1 + \lambda } \right)}}{{16}} \times \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \hfill & {} \hfill \\ {\quad \times \left[ {1 + \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right]} \hfill & {i = 1 - 16} \hfill \\ {\quad \times \left[ {1 + \cos \left( {2\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right]} \hfill & {} \hfill \\ {\quad \times \left[ {1 + \cos \left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right]} \hfill & {} \hfill \\ \end{array} \hfill \\ \end{gathered}$$(32)
Also, the shape functions of the spherical shell superelement without pole are given as follows:
-
(a)
\(M = 3, N = 16\):
$$\begin{array}{*{20}l} \begin{aligned} & N_{{1,{\text{i}}}} = \frac{{\gamma \left( {\gamma - 1} \right)}}{8} \times \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right) \\ & \quad \times \left[ {1 + \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right] \\ & \quad \times \left[ {1 + \cos \left( {2\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right] \\ & \quad \times \left[ {1 + \cos \left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right] \\ \end{aligned} \hfill & {i = 1 - 16} \hfill \\ \begin{aligned} & N_{{2,{\text{i}}}} = \frac{{\left( {1 - \gamma } \right)\left( {1 + \gamma } \right)}}{4} \times \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right) \\ & \quad \times \left[ {1 + \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right] \\ & \quad \times \left[ {1 + \cos \left( {2\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right] \\ & \quad \times \left[ {1 + \cos \left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right] \\ \end{aligned} \hfill & {i = 1 - 16} \hfill \\ \begin{aligned} & N_{{3,{\text{i}}}} = \frac{{\gamma \left( {\gamma + 1} \right)}}{8} \times \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right) \\ & \quad \times \left[ {1 + \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right] \\ & \quad \times \left[ {1 + \cos \left( {2\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right] \\ & \quad \times \left[ {1 + \cos \left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right] \\ \end{aligned} \hfill & {i = 1 - 16} \hfill \\ \end{array}$$(33) -
(b)
\(M = 2, N = 16\):
$$\begin{array}{*{20}l} \begin{aligned} & N_{{1,{\text{i}}}} = \frac{{\left( {1 - \lambda } \right)}}{{16}} \times \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right) \\ & \quad \times \left[ {1 + \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right] \\ & \quad \times \left[ {1 + \cos \left( {2\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right] \\ & \quad \times \left[ {1 + \cos \left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right] \\ \end{aligned} \hfill & {i = 1 - 16} \hfill \\ \begin{aligned} & N_{{2,{\text{i}}}} = \frac{{\left( {1 + \lambda } \right)}}{{16}} \times \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right) \\ & \quad \times \left[ {1 + \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right] \\ & \quad \times \left[ {1 + \cos \left( {2\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right] \\ & \quad \times \left[ {1 + \cos \left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right] \\ \end{aligned} \hfill & {i = 1 - 16~} \hfill \\ \end{array} .$$(34)
Rights and permissions
About this article
Cite this article
Shamloofard, M., Hosseinzadeh, A. & Movahhedy, M.R. Development of a shell superelement for large deformation and free vibration analysis of composite spherical shells. Engineering with Computers 37, 3551–3567 (2021). https://doi.org/10.1007/s00366-020-01015-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00366-020-01015-w