Skip to main content
Log in

Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Static stability of beams subjected to nonuniform axial compressive and shear loads is essential in many industrial applications, such as aircraft, automotive, mechanical, civil and naval. Thus, this article tends to investigate and optimize critical buckling loads of thin/thick sandwich functionally graded (FG) beam with porous core, for the first time. The proposed model is developed to consider a sandwich beam with three layers, which has top and bottom FG layers reinforced by single-walled carbon nanotubes (SWCNTs) and core porous layer with various porosity distributions. The variable in-plane compressive load is described by different distributed functions. Parabolic higher-order shear deformation theory of Reddy is adopted to describe kinematic displacement field and consider both thin and thick structures. The equilibrium governing variable-coefficient differential equations are obtained in detail by generalized variational principle. Equilibrium equations are solved numerically by differential quadrature method to get critical buckling loads. Numerical results are illustrated to examine influences of porosity function, porosity percentage, distribution gradation index, load types and boundary conditions on buckling loads of sandwich FG SWCNTs beam with porous core. Particle swarm optimization algorithm is adopted to get optimal axial load function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alimirzaei S, Mohammadimehr M, Tounsi A (2019) Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions. Struct Eng Mech 71(5):485–502. https://doi.org/10.12989/sem.2019.71.5.485

    Article  Google Scholar 

  2. Almitani KH (2018) Buckling behaviors of symmetric and antisymmetric functionally graded beams. J Appl Comput Mech 4(2):115–124. https://doi.org/10.22055/JACM.2017.23040.1147

    Article  Google Scholar 

  3. Alshorbagy AE, Eltaher MA, Mahmoud FF (2011) Free vibration characteristics of a functionally graded beam by finite element method. Appl Math Model 35(1):412–425. https://doi.org/10.1016/j.apm.2010.07.006

    Article  MathSciNet  MATH  Google Scholar 

  4. Bai ZQ, Gu Y, Fan CM (2019) A direct Chebyshev collocation method for the numerical solutions of three-dimensional Helmholtz-type equations. Eng Anal Bound Elem 104:26–33. https://doi.org/10.1016/j.enganabound.2019.03.023

    Article  MathSciNet  MATH  Google Scholar 

  5. Babaei H, Eslami MR, Khorshidvand AR (2020) Thermal buckling and postbuckling responses of geometrically imperfect FG porous beams based on physical neutral plane. J Therm Stress 43(1):109–131. https://doi.org/10.1080/01495739.2019.1660600

    Article  Google Scholar 

  6. Bessaim A, Ahmed Houari MS, Abdelmoumen Anis B, Kaci A, Tounsi A, Bedia A, Abbes E (2018) Buckling analysis of embedded nanosize FG beams based on a refined hyperbolic shear deformation theory. J Appl Comput Mech 4(3):140–146. https://doi.org/10.22055/JACM.2017.22996.1146

    Article  Google Scholar 

  7. Bhavar V, Kattire P, Thakare S, Singh RKP (2017) A review on functionally gradient materials (FGMs) and their applications. In: IOP Conference Series: Materials Science and Engineering, vol 229, no 1. IOP Publishing, p 012021. https://doi.org/10.1088/1757899X/229/1/012021

  8. Bohlooly M, Malekzadeh Fard K (2019) Buckling and postbuckling of concentrically stiffened piezo-composite plates on elastic foundations. J Appl Comput Mech 5(1):128–140. https://doi.org/10.22055/JACM.2018.25539.1277

    Article  Google Scholar 

  9. Chen D, Yang J, Kitipornchai S (2015) Elastic buckling and static bending of shear deformable functionally graded porous beam. Compos Struct 133:54–61. https://doi.org/10.1016/j.compstruct.2015.07.052

    Article  Google Scholar 

  10. Chen D, Kitipornchai S, Yang J (2016) Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core. Thin-Walled Struct 107:39–48. https://doi.org/10.1016/j.tws.2016.05.025

    Article  Google Scholar 

  11. Chen D, Yang J, Kitipornchai S (2019) Buckling and bending analyses of a novel functionally graded porous plate using Chebyshev-Ritz method. Arch Civ Mech Eng 19(1):157–170. https://doi.org/10.1016/j.acme.2018.09.004

    Article  Google Scholar 

  12. Dorduncu M (2020) Stress analysis of sandwich plates with functionally graded cores using peridynamic differential operator and refined zigzag theory. Thin-Walled Struct 146:106468. https://doi.org/10.1016/j.tws.2019.106468

    Article  Google Scholar 

  13. Ebrahimi F, Salari E (2015) Size-dependent thermo-electrical buckling analysis of functionally graded piezoelectric nanobeams. Smart Mater Struct 24(12):125007. https://doi.org/10.1088/0964-1726/24/12/125007

    Article  Google Scholar 

  14. Ebrahimi F, Farazmandnia N, Kokaba MR, Mahesh V (2019) Vibration analysis of porous magneto-electro-elastically actuated carbon nanotube-reinforced composite sandwich plate based on a refined plate theory. Eng Comput. https://doi.org/10.1007/s00366-019-00864-4

    Article  Google Scholar 

  15. Ebrahimi F, Jafari A, Selvamani R (2020) Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment. Adv Nano Res 8(1):83. https://doi.org/10.12989/anr.2020.8.1.083

    Article  Google Scholar 

  16. Eltaher MA, Emam SA, Mahmoud FF (2012) Free vibration analysis of functionally graded size-dependent nanobeams. Appl Math Comput 218(14):7406–7420. https://doi.org/10.1016/j.amc.2011.12.090

    Article  MathSciNet  MATH  Google Scholar 

  17. Eltaher MA, Alshorbagy AE, Mahmoud FF (2013) Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams. Compos Struct 99:193–201. https://doi.org/10.1016/j.compstruct.2012.11.039

    Article  Google Scholar 

  18. Eltaher MA, Emam SA, Mahmoud FF (2013) Static and stability analysis of nonlocal functionally graded nanobeams. Compos Struct 96:82–88. https://doi.org/10.1016/j.compstruct.2012.09.030

    Article  Google Scholar 

  19. Eltaher MA, Khairy A, Sadoun AM, Omar FA (2014) Static and buckling analysis of functionally graded Timoshenko nanobeams. Appl Math Comput 229:283–295. https://doi.org/10.1016/j.amc.2013.12.072

    Article  MathSciNet  MATH  Google Scholar 

  20. Eltaher MA, Fouda N, El-midany T, Sadoun AM (2018) Modified porosity model in analysis of functionally graded porous nanobeams. J Braz Soc Mech Sci Eng 40(3):141. https://doi.org/10.1007/s40430-018-1065-0

    Article  Google Scholar 

  21. Eltaher MA, Mohamed N, Mohamed SA, Seddek LF (2019) Periodic and nonperiodic modes of postbuckling and nonlinear vibration of beams attached to nonlinear foundations. Appl Math Model 75:414–445. https://doi.org/10.1016/j.apm.2019.05.026

    Article  MathSciNet  MATH  Google Scholar 

  22. Eltaher MA, Mohamed SA, Melaibari A (2020) Static stability of a unified composite beams under varying axial loads. Thin-Walled Struct 147:106488. https://doi.org/10.1016/j.tws.2019.106488

    Article  Google Scholar 

  23. Eltaher MA, Mohamed SA (2020) Buckling and stability analysis of sandwich beams subjected to varying axial loads. Steel Compos Struct 34(2):241. https://doi.org/10.12989/scs.2020.34.2.241

    Article  Google Scholar 

  24. Emam S, Eltaher MA (2016) Buckling and postbuckling of composite beams in hygrothermal environments. Compos Struct 152:665–675. https://doi.org/10.1016/j.compstruct.2016.05.029

    Article  Google Scholar 

  25. Emam SA, Eltaher MA, Khater ME, Abdalla WS (2018) Postbuckling and free vibration of multilayer imperfect nanobeams under a pre-stress load. Appl Sci 8(11):2238. https://doi.org/10.3390/app8112238

    Article  Google Scholar 

  26. Esmaeili M, Tadi Beni Y (2019) Vibration and buckling analysis of functionally graded flexoelectric smart beam. J Appl Comput Mech 5(5):900–917. https://doi.org/10.22055/JACM.2019.27857.1439

    Article  Google Scholar 

  27. Fang W, Yu T, Bui TQ (2019) Analysis of thick porous beams by a Quasi-3D theory and isogeometric analysis. Compos Struct 221:110890. https://doi.org/10.1016/j.compstruct.2019.04.062

    Article  Google Scholar 

  28. Fu Y, Zhong J, Shao X, Chen Y (2015) Thermal postbuckling analysis of functionally graded tubes based on a refined beam model. Int J Mech Sci 96:58–64. https://doi.org/10.1016/j.ijmecsci.2015.03.019

    Article  Google Scholar 

  29. Gao K, Huang Q, Kitipornchai S, Yang J (2019) Nonlinear dynamic buckling of functionally graded porous beams. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2019.1567888

    Article  Google Scholar 

  30. Gao K, Do DM, Li R, Kitipornchai S, Yang J (2020) Probabilistic stability analysis of functionally graded graphene reinforced porous beams. Aerosp Sci Technol 98:105738. https://doi.org/10.1016/j.ast.2020.105738

    Article  Google Scholar 

  31. Grygorowicz M, Magnucki K, Malinowski M (2015) Elastic buckling of a sandwich beam with variable mechanical properties of the core. Thin-Walled Struct 87:127–132. https://doi.org/10.1016/j.tws.2014.11.014

    Article  Google Scholar 

  32. Gunda JB (2014) Thermal post-buckling & large amplitude free vibration analysis of Timoshenko beams: Simple closed-form solutions. Appl Math Model 38(17–18):4548–4558. https://doi.org/10.1016/j.apm.2014.02.019

    Article  MathSciNet  MATH  Google Scholar 

  33. Hamed MA, Sadoun AM, Eltaher MA (2019) Effects of porosity models on static behavior of size dependent functionally graded beam. Struct Eng Mech 71(1):89–98. https://doi.org/10.12989/sem.2019.71.1.089

    Article  Google Scholar 

  34. Hamed MA, Mohamed SA, Eltaher MA (2020) Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads. Steel Compos Struct 34(1):75. https://doi.org/10.12989/scs.2020.34.1.075

    Article  Google Scholar 

  35. Humer A (2013) Exact solutions for the buckling and postbuckling of shear-deformable beams. Acta Mech 224(7):1493–1525. https://doi.org/10.1007/s00707-013-0818-1

    Article  MathSciNet  MATH  Google Scholar 

  36. Jabbari M, Joubaneh EF, Khorshidvand AR, Eslami MR (2013) Buckling analysis of porous circular plate with piezoelectric actuator layers under uniform radial compression. Int J Mech Sci 70:50–56. https://doi.org/10.1016/j.ijmecsci.2013.01.031

    Article  MATH  Google Scholar 

  37. Jabbari M, Mojahedin A, Haghi M (2014) Buckling analysis of thin circular FG plates made of saturated porous-soft ferromagnetic materials in transverse magnetic field. Thin-Walled Struct 85:50–56. https://doi.org/10.1016/j.tws.2014.07.018

    Article  Google Scholar 

  38. Jafari Fesharaki J, Roghani M (2019) Elastic behavior of functionally graded two tangled circles chamber. J Appl Comput Mech 5(4):667–679. https://doi.org/10.22055/JACM.2019.27058.1372

    Article  Google Scholar 

  39. Jena SK, Chakraverty S, Malikan M (2019) Implementation of Haar wavelet, higher order Haar wavelet, and differential quadrature methods on buckling response of strain gradient nonlocal beam embedded in an elastic medium. Eng Comput. https://doi.org/10.1007/s00366-019-00883-1

    Article  Google Scholar 

  40. Jena SK, Chakraverty S (2019) Differential quadrature and differential transformation methods in buckling analysis of nanobeams. Curved Layered Struct 6(1):68–76. https://doi.org/10.1515/cls-2019-0006

    Article  Google Scholar 

  41. Jena SK, Chakraverty S, Malikan M (2020) Implementation of non-probabilistic methods for stability analysis of nonlocal beam with structural uncertainties. Eng Comput. https://doi.org/10.1007/s00366-020-00987-z

    Article  Google Scholar 

  42. Karamanli A, Aydogdu M (2019) Buckling of laminated composite and sandwich beams due to axially varying in-plane loads. Compos Struct 210:391–408. https://doi.org/10.1016/j.compstruct.2018.11.067

    Article  Google Scholar 

  43. Ke LL, Yang J, Kitipornchai S (2010) Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Compos Struct 92(3):676–683. https://doi.org/10.1016/j.compstruct.2009.09.024

    Article  Google Scholar 

  44. Khiloun M, Bousahla AA, Kaci A, Bessaim A, Tounsi A, Mahmoud SR (2019) Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT. Eng Comput. https://doi.org/10.1007/s00366-019-00732-1

    Article  Google Scholar 

  45. Kırlangıç O, Akbaş ŞD (2020) Comparison study between layered and functionally graded composite beams for static deflection and stress analyses. J Comput Appl Mech. https://doi.org/10.22059/JCAMECH.2020.296319.473

    Article  Google Scholar 

  46. Kitipornchai S, Chen D, Yang J (2017) Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Mater Des 116:656–665. https://doi.org/10.1016/j.matdes.2016.12.061

    Article  Google Scholar 

  47. Koizumi M, Niino M (1995) Overview of FGM research in Japan. MRS Bull 20(1):19–21. https://doi.org/10.1557/S0883769400048867

    Article  Google Scholar 

  48. Koizumi MFGM (1997) FGM activities in Japan. Compos B Eng 28(1–2):1–4. https://doi.org/10.1016/S1359-8368(96)00016-9

    Article  Google Scholar 

  49. Lee JC, Ahn SH (2018) Bulk density measurement of porous functionally graded materials. Int J Precis Eng Manuf 19(1):31–37. https://doi.org/10.1007/s12541-018-0004-4

    Article  Google Scholar 

  50. Li L, Han B, Zhang QC, Zhao ZY, Lu TJ (2019) Dynamic response of clamped sandwich beams: analytical modeling. Theor Appl Mech Lett 9(6):391–396. https://doi.org/10.1016/j.taml.2019.06.002

    Article  Google Scholar 

  51. Li SR, Batra RC (2013) Relations between buckling loads of functionally graded Timoshenko and homogeneous Euler–Bernoulli beams. Compos Struct 95:5–9. https://doi.org/10.1016/j.compstruct.2012.07.027

    Article  Google Scholar 

  52. Li Z, Zheng J (2020) Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading. Thin-Walled Struct 146:106454. https://doi.org/10.1016/j.tws.2019.106454

    Article  Google Scholar 

  53. Magnucka-Blandzi E (2008) Axi-symmetrical deflection and buckling of circular porous-cellular plate. Thin-Walled Struct 46(3):333–337. https://doi.org/10.1016/j.tws.2007.06.006

    Article  Google Scholar 

  54. Malikan M, Jabbarzadeh M, Dastjerdi S (2017) Non-linear static stability of bi-layer carbon nanosheets resting on an elastic matrix under various types of in-plane shearing loads in thermo-elasticity using nonlocal continuum. Microsyst Technol 23(7):2973–2991. https://doi.org/10.1007/s00542-016-3079-9

    Article  Google Scholar 

  55. Malikan M (2017) Analytical predictions for the buckling of a nanoplate subjected to non-uniform compression based on the four-variable plate theory. J Appl Comput Mech 3(3):218–228. https://doi.org/10.22055/JACM.2017.21757.1115

    Article  Google Scholar 

  56. Malikan M, Sadraee Far MN (2018) Differential quadrature method for dynamic buckling of graphene sheet coupled by a viscoelastic medium using neperian frequency based on nonlocal elasticity theory. J Appl Comput Mech 4(3):147–160. https://doi.org/10.22055/JACM.2017.22661.1138

    Article  Google Scholar 

  57. Malikan M, Tornabene F, Dimitri R (2018) Nonlocal three-dimensional theory of elasticity for buckling behavior of functionally graded porous nanoplates using volume integrals. Mater Res Express 5(9):095006. https://doi.org/10.1088/2053-1591/aad4c3

    Article  Google Scholar 

  58. Matuła I, Dercz G, Barczyk J (2019) Titanium/Zirconium functionally graded materials with porosity gradients for potential biomedical applications. Mater Sci Technol. https://doi.org/10.1080/02670836.2019.1593603

    Article  Google Scholar 

  59. Megahed M, Abo-bakr RM, Mohamed SA (2020) Optimization of hybrid natural laminated composite beams for a minimum weight and cost design. Compos Struct 239:111984. https://doi.org/10.1016/j.compstruct.2020.111984

    Article  Google Scholar 

  60. Miyamoto Y, Kaysser WA, Rabin BH, Kawasaki A, Ford RG (eds) (2013) Functionally graded materials: design, processing and applications, vol 5. Springer, Berlin

    Google Scholar 

  61. Mohamed N, Eltaher MA, Mohamed SA, Seddek LF (2018) Numerical analysis of nonlinear free and forced vibrations of buckled curved beams resting on nonlinear elastic foundations. Int J Non-Linear Mech 101:157–173. https://doi.org/10.1016/j.ijnonlinmec.2018.02.014

    Article  Google Scholar 

  62. Mohamed N, Eltaher MA, Mohamed SA, Seddek LF (2019) Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation. Struct Eng Mech 70(6):737–750. https://doi.org/10.12989/sem.2019.70.6.737

    Article  Google Scholar 

  63. Mohamed N, Mohamed SA, Eltaher MA (2020) Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model. Eng Comput. https://doi.org/10.1007/s00366-020-00976-2

    Article  Google Scholar 

  64. Pascon JP (2019) Finite element analysis of functionally graded hyperelastic beams under plane stress. Eng Comput. https://doi.org/10.1007/s00366-019-00761-w

    Article  Google Scholar 

  65. Radwan AF (2019) Quasi-3D integral model for thermomechanical buckling and vibration of FG porous nanoplates embedded in an elastic medium. Int J Mech Sci 157:320–335. https://doi.org/10.1016/j.ijmecsci.2019.04.031

    Article  Google Scholar 

  66. Reddy JN (2003) Mechanics of laminated composite plates and shells: theory and analysis. CRC Press, Boca Raton

    Google Scholar 

  67. Sasaki M, Wang Y, Hirano T, Hirai T (1989) Design of SiC/C functionally gradient material and its preparation by chemical vapor deposition. J Ceram Soc Jpn 97(1125):539–543. https://doi.org/10.2109/jcersj.97.539

    Article  Google Scholar 

  68. Sayyad A, Ghumare S (2019) A new quasi-3D model for functionally graded plates. J Appl Comput Mech 5(2):367–380. https://doi.org/10.22055/JACM.2018.26739.1353

    Article  Google Scholar 

  69. Sedighi HM, Shirazi KH, Noghrehabadi A (2012) Application of recent powerful analytical approaches on the non-linear vibration of cantilever beams. Int J Nonlinear Sci Numer Simul 13(7–8):487–494. https://doi.org/10.1515/ijnsns-2012-0030

    Article  MathSciNet  MATH  Google Scholar 

  70. Sedighi HM, Shirazi KH, Attarzadeh MA (2013) A study on the quintic nonlinear beam vibrations using asymptotic approximate approaches. Acta Astronaut 91:245–250. https://doi.org/10.1016/j.actaastro.2013.06.018

    Article  Google Scholar 

  71. Sedighi HM, Daneshmand F (2014) Nonlinear transversely vibrating beams by the homotopy perturbation method with an auxiliary term. J Appl Comput Mech 1(1):1–9. https://doi.org/10.22055/JACM.2014.10545

    Article  Google Scholar 

  72. Sedighi HM, Daneshmand F, Abadyan M (2016) Modeling the effects of material properties on the pull-in instability of nonlocal functionally graded nano-actuators. J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM) 96(3):385–400. https://doi.org/10.1002/zamm.201400160

    Article  MathSciNet  Google Scholar 

  73. Sedighi HM, Bozorgmehri A (2016) Dynamic instability analysis of doubly clamped cylindrical nanowires in the presence of Casimir attraction and surface effects using modified couple stress theory. Acta Mech 227(6):1575–1591. https://doi.org/10.1007/s00707-016-1562-0

    Article  MathSciNet  MATH  Google Scholar 

  74. Ouakad HM, Sedighi HM, Younis MI (2017) One-to-one and three-to-one internal resonances in MEMS shallow arches. J Comput Nonlinear Dyn. https://doi.org/10.1115/1.4036815

    Article  Google Scholar 

  75. Shafiei N, Mousavi A, Ghadiri M (2016) On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams. Int J Eng Sci 106:42–56. https://doi.org/10.1016/j.ijengsci.2016.05.007

    Article  MATH  Google Scholar 

  76. Shafiei N, Kazemi M (2017) Nonlinear buckling of functionally graded nano-/micro-scaled porous beams. Compos Struct 178:483–492. https://doi.org/10.1016/j.compstruct.2017.07.045

    Article  Google Scholar 

  77. Shu C (2012) Differential quadrature and its application in engineering. Springer, Berlin

    Google Scholar 

  78. Wu D, Liu A, Huang Y, Huang Y, Pi Y, Gao W (2018) Dynamic analysis of functionally graded porous structures through finite element analysis. Eng Struct 165:287–301. https://doi.org/10.1016/j.engstruct.2018.03.023

    Article  Google Scholar 

  79. Xue Y, Jin G, Ma X, Chen H, Ye T, Chen M, Zhang Y (2019) Free vibration analysis of porous plates with porosity distributions in the thickness and in-plane directions using isogeometric approach. Int J Mech Sci 152:346–362. https://doi.org/10.1016/j.ijmecsci.2019.01.004

    Article  Google Scholar 

  80. Yas MH, Samadi N (2012) Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation. Int J Press Vessels Pip 98:119–128. https://doi.org/10.1016/j.ijpvp.2012.07.012

    Article  Google Scholar 

  81. Yüksel YZ, Akbaş ŞD (2019) Buckling analysis of a fiber reinforced laminated composite plate with porosity. J Comput Appl Mech 50(2):375–380. https://doi.org/10.22059/JCAMECH.2019.291967.448

    Article  Google Scholar 

  82. Zargaripoor A, Daneshmehr AR, Nikkhah Bahrami M (2019) Study on free vibration and wave power reflection in functionally graded rectangular plates using wave propagation approach. J Appl Comput Mech 5(1):77–90. https://doi.org/10.22055/JACM.2018.25692.1287

    Article  Google Scholar 

  83. Zeng S, Wang BL, Wang KF (2019) Nonlinear vibration of piezoelectric sandwich nanoplates with functionally graded porous core with consideration of flexoelectric effect. Compos Struct 207:340–351. https://doi.org/10.1016/j.compstruct.2018.09.040

    Article  Google Scholar 

  84. Zhao J, Wang Q, Deng X, Choe K, Zhong R, Shuai C (2019) Free vibrations of functionally graded porous rectangular plate with uniform elastic boundary conditions. Compos B Eng 168:106–120. https://doi.org/10.1016/j.compositesb.2018.12.044

    Article  Google Scholar 

  85. Zhao S, Yang Z, Kitipornchai S, Yang J (2020) Dynamic instability of functionally graded porous arches reinforced by graphene platelets. Thin-Walled Struct 147:106491. https://doi.org/10.1016/j.tws.2019.106491

    Article  Google Scholar 

  86. Ziaee S (2015) Small scale effect on linear vibration of buckled size-dependent FG nanobeams. Ain Shams Eng J 6(2):587–598. https://doi.org/10.1016/j.asej.2014.11.014

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. (D-486-135-1441). The authors, therefore, gratefully acknowledge DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Eltaher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamed, M.A., Abo-bakr, R.M., Mohamed, S.A. et al. Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core. Engineering with Computers 36, 1929–1946 (2020). https://doi.org/10.1007/s00366-020-01023-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01023-w

Keywords

Navigation