Skip to main content
Log in

Mixed element algorithm based on a second-order time approximation scheme for a two-dimensional nonlinear time fractional coupled sub-diffusion model

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this article, a numerical algorithm is presented to solve a two-dimensional nonlinear time fractional coupled sub-diffusion problem, where the second-order Crank–Nicolson scheme with a second-order WSGD formula is used in the time direction, and a mixed element method is applied in the space direction. The existence and uniqueness of the mixed element solution and the stability for fully discrete scheme are proven. In addition, the optimal a priori error estimates for unknown scalar function u and v in \(L^2\) and \(H^1\)-norms and a priori error estimates for their fluxes \(\sigma\) and \(\lambda\) in \((L^2)^2\)-norm are obtained. Finally, some numerical calculations are presented to illustrate the validity for the proposed numerical algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier, Amsterdam

    MATH  Google Scholar 

  2. Baleanu D, Diethelm K, Scalas E, Trujillo JJ (2012) Fractional calculus: models and numerical methods, 3 of Series on complexity, nonlinearity and chaos. World Scientific Publishing, New York

    MATH  Google Scholar 

  3. Li CP, Wang Z (2020) The discontinuous Galerkin finite element method for Caputo-type nonlinear conservation law. Math Comput Simul 169:51–73

    MathSciNet  MATH  Google Scholar 

  4. Solís-Pérez JE, Gómez-Aguilar JF, Atangana A (2019) A fractional mathematical model of breast cancer competition model. Chaos Solitons Fractals 127:38–54

    MathSciNet  MATH  Google Scholar 

  5. Yin BL, Liu Y, Li H, Zhang Z (2019) Two families of novel second-order fractional numerical formulas and their applications to fractional differential equations. arXiv preprint arXiv:1906.01242

  6. Heydari MH, Atangana A, Avazzadeh Z (2019) Chebyshev polynomials for the numerical solution of fractal-fractional model of nonlinear Ginzburg–Landau equation. Eng Comput. https://doi.org/10.1007/s00366-019-00889-9

    Article  Google Scholar 

  7. Liu Y, Yin B, Li H, Zhang Z (2019) The unified theory of shifted convolution quadrature for fractional calculus. arXiv preprint arXiv:1908.01136

  8. Karamali G, Dehghan M, Abbaszadeh M (2019) Numerical solution of a time-fractional PDE in the electroanalytical chemistry by a local meshless method. Eng Comput 35(1):87–100

    Google Scholar 

  9. Shi DY, Yang HJ (2018) Superconvergence analysis of finite element method for time-fractional Thermistor problem. Appl Math Comput 323:31–42

    MathSciNet  MATH  Google Scholar 

  10. Li DF, Zhang CJ (2020) Long time numerical behaviors of fractional pantograph equations. Math Comput Simul 172:244–257

    MathSciNet  MATH  Google Scholar 

  11. Zhou Y, Luo ZD (2019) An optimized Crank–Nicolson finite difference extrapolating model for the fractional-order parabolic-type sine-Gordon equation. Adv Differ Equ. https://doi.org/10.1186/s13662-018-1939-6

    Article  MathSciNet  MATH  Google Scholar 

  12. Sun HG, Chen YQ, Chen W (2011) Random-order fractional differential equation models. Signal Process 91(3):525–530

    MathSciNet  MATH  Google Scholar 

  13. Liu Y, Du YW, Li H, Wang JF (2016) A two-grid finite element approximation for a nonlinear time-fractional Cable equation. Nonlinear Dyn 85:2535–2548

    MathSciNet  MATH  Google Scholar 

  14. Lin YM, Li XJ, Xu CJ (2011) Finite difference/spectral approximations for the fractional Cable equation. Math Comput 80(275):1369–1396

    MathSciNet  MATH  Google Scholar 

  15. Liu Y, Du YW, Li H, Liu FW, Wang YJ (2019) Some second-order \(\theta\) schemes combined with finite element method for nonlinear fractional cable equation. Numer Algorithms 80:533–555

    MathSciNet  MATH  Google Scholar 

  16. Li D, Zhang J, Zhang Z (2018) Unconditionally optimal error estimates of a linearized Galerkin method for nonlinear time fractional reaction-subdiffusion equations. J Sci Comput 76(2):848–866

    MathSciNet  MATH  Google Scholar 

  17. Yin BL, Liu Y, Li H, Zhang ZM (2019) Finite element methods based on two families of second-order numerical formulas for the fractional Cable model with smooth solutions. arXiv preprint arXiv:1911.08166

  18. Yin BL, Liu Y, Li H (2020) A class of shifted high-order numerical methods for the fractional mobile/immobile transport equations. Appl Math Comput 368:124799

    MathSciNet  MATH  Google Scholar 

  19. Shi DY, Yang HJ (2018) A new approach of superconvergence analysis for two-dimensional time fractional diffusion equation. Comput Math Appl 75(8):3012–3023

    MathSciNet  MATH  Google Scholar 

  20. Ren J, Sun ZZ (2015) Maximum norm error analysis of difference schemes for fractional diffusion equations. Appl Math Comput 256:299–314

    MathSciNet  MATH  Google Scholar 

  21. Zeng FH, Li CP, Liu FW, Turner I (2013) The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J Sci Comput 35(6):A2976–A3000

    MathSciNet  MATH  Google Scholar 

  22. Jin BT, Li BY, Zhou Z (2017) An analysis of the Crank–Nicolson method for subdiffusion. IMA J Numer Anal 38(1):518–541

    MathSciNet  MATH  Google Scholar 

  23. Guo SM, Mei L, Zhang Z, Chen J, He Y, Li Y (2019) Finite difference/Hermite–Galerkin spectral method for multi-dimensional time-fractional nonlinear reaction-diffusion equation in unbounded domains. Appl Math Model 70:246–263

    MathSciNet  MATH  Google Scholar 

  24. Yuste SB, Quintana-Murillo J (2012) A finite difference method with non-uniform timesteps for fractional diffusion equations. Comput Phys Commun 183(12):2594–2600

    MathSciNet  MATH  Google Scholar 

  25. Liao HL, Li D, Zhang J (2018) Sharp error estimate of the nonuniform \(L1\) formula for linear reaction-subdiffusion equations. SIAM J Numer Anal 56(2):1112–1133

    MathSciNet  MATH  Google Scholar 

  26. Zheng M, Liu F, Liu Q, Burrage K, Simpson MJ (2017) Numerical solution of the time fractional reaction-diffusion equation with a moving boundary. J Comput Phys 338:493–510

    MathSciNet  MATH  Google Scholar 

  27. Liu Y, Zhang M, Li H, Li JC (2017) High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional subdiffusion equation. Comput Math Appl 73:1298–1314

    MathSciNet  MATH  Google Scholar 

  28. Zhang JX, Yang XZ (2018) A class of efficient difference method for time fractional reaction-diffusion equation. Comput Appl Math 37:4376–4396

    MathSciNet  MATH  Google Scholar 

  29. Li BJ, Luo H, Xie XP (2019) Analysis of a time-stepping scheme for time fractional diffusion problems with nonsmooth data. SIAM J Numer Anal 57:779–798

    MathSciNet  MATH  Google Scholar 

  30. Liu N, Liu Y, Li H, Wang JF (2018) Time second-order finite difference/finite element algorithm for nonlinear time-fractional diffusion problem with fourth-order derivative term. Comput Math Appl 75:3521–3536

    MathSciNet  MATH  Google Scholar 

  31. Liu Y, Du YW, Li H, Li JC, He S (2015) A two-grid mixed finite element method for a nonlinear fourth-order reaction diffusion problem with time-fractional derivative. Comput Math Appl 70(10):2474–2492

    MathSciNet  MATH  Google Scholar 

  32. Feng L, Liu F, Turner I (2019) Finite difference/finite element method for a novel 2D multi-term time-fractional mixed sub-diffusion and diffusion-wave equation on convex domains. Commun Nonlinear Sci Numer Simul 70:354–371

    MathSciNet  MATH  Google Scholar 

  33. Yin BL, Liu Y, Li H, He S (2019) Fast algorithm based on TT-M FE system for space fractional Allen–Cahn equations with smooth and non-smooth solutions. J Comput Phys 379:351–372

    MathSciNet  Google Scholar 

  34. Zhai SY, Weng ZF, Feng XL (2016) Fast explicit operator splitting method and time-step adaptivity for fractional non-local Allen–Cahn model. Appl Math Model 40(2):1315–1324

    MathSciNet  MATH  Google Scholar 

  35. Bu L, Mei L, Hou Y (2019) Stable second-order schemes for the space-fractional Cahn–Hilliard and Allen–Cahn equations. Comput Math Appl 78(11):3485–3500

    MathSciNet  MATH  Google Scholar 

  36. Li C, Liu SM (2019) Local discontinuous Galerkin scheme for space fractional Allen–Cahn equation. Commun Appl Math Comput 2(1):73–91

    MathSciNet  MATH  Google Scholar 

  37. Bu WP, Tang YF, Yang JY (2014) Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations. J Comput Phys 276:26–38

    MathSciNet  MATH  Google Scholar 

  38. Zhang H, Jiang XY, Zeng FH, Karniadakis GE (2020) A stabilized semi-implicit Fourier spectral method for nonlinear space-fractional reaction-diffusion equations. J Comput Phys 405:109141

    MathSciNet  MATH  Google Scholar 

  39. Feng LB, Liu FW, Turner I (2020) An unstructured mesh control volume method for two-dimensional space fractional diffusion equations with variable coefficients on convex domains. J Comput Appl Math 364:112319

    MathSciNet  MATH  Google Scholar 

  40. Tadjeran C, Meerschaert M, Scheffler H (2006) A second-order accurate numerical approximation for the fractional diffusion equation. J Comput Phys 213:205–213

    MathSciNet  MATH  Google Scholar 

  41. Liu F, Zhuang P, Turner I, Burrage K, Anh V (2014) A new fractional finite volume method for solving the fractional diffusion equation. Appl Math Model 38(15):3871–3878

    MathSciNet  MATH  Google Scholar 

  42. Liu F, Zhuang P, Anh V, Turner I, Burrage K (2007) Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl Math Comput 191:12–20

    MathSciNet  MATH  Google Scholar 

  43. Liu H, Cheng AJ, Wang H (2020) A fast Galerkin finite element method for a space-time fractional Allen–Cahn equation. J Comput Appl Math 368:112482

    MathSciNet  MATH  Google Scholar 

  44. Liu ZG, Cheng AJ, Li XL, Wang H (2017) A fast solution technique for finite element discretization of the space-time fractional diffusion equation. Appl Numer Math 119:146–163

    MathSciNet  MATH  Google Scholar 

  45. Feng LB, Zhuang P, Liu F, Turner I, Gu YT (2016) Finite element method for space-time fractional diffusion equation. Numer Algorithms 72(3):749–767

    MathSciNet  MATH  Google Scholar 

  46. Li CP, Zhao ZG, Chen YQ (2011) Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput Math Appl 62(3):855–875

    MathSciNet  MATH  Google Scholar 

  47. Hou YX, Feng RH, Liu Y, Li H, Gao W (2017) A MFE method combined with L1-approximation for a nonlinear time-fractional coupled diffusion system. Int J Model Simul Sci Comput 8(1):1750012

    Google Scholar 

  48. Kumar D, Chaudhary S, Kumar VVKS (2019) Galerkin finite element schemes with fractional Crank–Nicolson method for the coupled time-fractional nonlinear diffusion system. Comput Appl Math 38:123

    MathSciNet  MATH  Google Scholar 

  49. Tian WY, Zhou H, Deng WH (2015) A class of second order difference approximations for solving space fractional diffusion equations. Math Comput 84:1703–1727

    MathSciNet  MATH  Google Scholar 

  50. Wang ZB, Vong SW (2014) Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J Comput Phys 277:1–15

    MathSciNet  MATH  Google Scholar 

  51. Du YW, Liu Y, Li H, Fang ZC, He S (2017) Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation. J Comput Phys 344:108–126

    MathSciNet  MATH  Google Scholar 

  52. Liu Y, Li H, Gao W, He S, Fang ZC (2014) A new mixed element method for a class of time-fractional partial differential equations. Sci World J 2014:141467

    Google Scholar 

  53. Zhao Y, Chen P, Bu W, Liu X, Tang Y (2017) Two mixed finite element methods for time-fractional diffusion equations. J Sci Comput 70(1):407–428

    MathSciNet  MATH  Google Scholar 

  54. Li M, Huang CM, Ming WY (2018) Mixed finite-element method for multi-term time-fractional diffusion and diffusion-wave equations. Comput Appl Math 37:2309–2334

    MathSciNet  MATH  Google Scholar 

  55. Chen SC, Chen HR (2010) New mixed element schemes for second order elliptic problem. Math Numer Sin 32:213–218

    MathSciNet  MATH  Google Scholar 

  56. Abbaszadeh M, Dehghan M (2019) Analysis of mixed finite element method (MFEM) for solving the generalized fractional reaction-diffusion equation on nonrectangular domains. Comput Math Appl 78(5):1531–1547

    MathSciNet  MATH  Google Scholar 

  57. Liu Y, Fang ZC, Li H, He S, Gao W (2013) A coupling method based on new MFE and FE for fourth-order parabolic equation. J Appl Math Comput 43:249–269

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to two referees and editor for their valuable suggestions which greatly improved the presentation of the paper. This work is supported by the National Natural Science Foundation of China (11661058, 11761053, 11701299), Natural Science Foundation of Inner Mongolia (2016MS0102, 2017MS0107), Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (NJYT-17-A07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, R., Liu, Y., Hou, Y. et al. Mixed element algorithm based on a second-order time approximation scheme for a two-dimensional nonlinear time fractional coupled sub-diffusion model. Engineering with Computers 38, 51–68 (2022). https://doi.org/10.1007/s00366-020-01032-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01032-9

Keywords

Navigation