Skip to main content
Log in

An efficient refracted salp swarm algorithm and its application in structural parameter identification

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Efficient and accurate structural parameter identification is critical for the practical application of structural health monitoring. In this paper, a novel algorithm named refracted salp swarm algorithm (RSSA) is proposed and applied to identify structural parameters. Firstly, the basic salp swarm algorithm is improved by refracted opposition-based learning strategy, multi-leader mechanism and adaptive conversion parameter strategy. The superiority of the proposed algorithm is verified by experiments of eight benchmark functions of various types and dimensions. Secondly, a new type of structural parameter identification (SPI) model is established by combining RSSA and the Newmark integration method, which is mainly used to solve the optimization problem based on structural acceleration, thereby identifying structural parameters such as stiffness, mass and damping ratio. Numerical simulation test of seven-floor frame proves that the new proposed RSSA could be successfully applied in the SPI model. Compared with other heuristic algorithms, RSSA can obtain more accurate recognition results under the circumstances incomplete measurement data and low signal-to-noise ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Balageas D, Fritzen CP, Güemes A (2001) Structural health monitoring. Struct Eng Mech Comput 6531(8):1185–1193

    Google Scholar 

  2. Yu J, Meng X, Shao X, Yan B, Yang L (2014) Identification of dynamic displacements and modal frequencies of a medium-span suspension bridge using multimode GNSS processing. Eng Struct 81:432–443. https://doi.org/10.1016/j.engstruct.2014.10.010

    Article  Google Scholar 

  3. Yu J, Meng X, Yan B, Xu B, Fan Q, Xie Y (2019) Global Navigation Satellite System-based positioning technology for structural health monitoring: a review. Struct Control Health Monit. https://doi.org/10.1002/stc.2467

    Article  Google Scholar 

  4. Burgess JC (1981) Engineering applications of correlation and spectral analysis, by Julius S. Bendat and Allan G. Piersol. J Acoust Soc Am 70(1):262–263

    Article  Google Scholar 

  5. Caicedo JM, Dyke SJ, Johnson EA (2004) Natural excitation technique and eigensystem realization algorithm for phase I of the IASC-ASCE benchmark problem: simulated data. J Eng Mech 130(1):49–60. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:1(49)

    Article  Google Scholar 

  6. Wang FG, Ling XZ, Xu X, Zhang F (2014) Structural stiffness identification based on the extended Kalman filter research. Abstr Appl Anal. https://doi.org/10.1155/2014/103102

    Article  MathSciNet  MATH  Google Scholar 

  7. Zheng L, Xia S, Wang J, Su X (2006) Damage detection of cracked beams based on wavelet transform. Int J Impact Eng 32(7):1190–1200

    Article  Google Scholar 

  8. Feldman M (2012) Hilbert transform methods for nonparametric identification of nonlinear time varying vibration systems. Mech Syst Signal Process 47(1–2):66–77

    Google Scholar 

  9. Braun CE, Chiwiacowsky LD, Gómez AT (2015) Variations of ant colony optimization for the solution of the structural damage identification problem. Procedia Comput Sci 51(1):875–884. https://doi.org/10.1016/j.procs.2015.05.218

    Article  Google Scholar 

  10. Greco R, Vanzi I (2019) New few parameters differential evolution algorithm with application to structural identification. J Traffic Transport Eng (English Ed) 6(1):1–14. https://doi.org/10.1016/j.jtte.2018.09.002

    Article  Google Scholar 

  11. Ding Z, Zhao Y, Lu Z (2019) Simultaneous identification of structural stiffness and mass parameters based on Bare-bones Gaussian Tree Seeds Algorithm using time-domain data. Appl Soft Comput 83:105602. https://doi.org/10.1016/j.asoc.2019.105602

    Article  Google Scholar 

  12. Ding ZH, Huang M, Lu ZR (2016) Structural damage detection using artificial bee colony algorithm with hybrid search strategy. Swarm Evolut Comput 28:1–13

    Article  Google Scholar 

  13. Nobahari M, Ghasemi MR, Shabakhty N (2017) A novel heuristic search algorithm for optimization with application to structural damage identification. Smart Struct Syst 19:449–461. https://doi.org/10.12989/sss.2017.19.4.449

    Article  Google Scholar 

  14. Xu H, Liu J, Lu Z (2016) Structural damage identification based on cuckoo search algorithm. Adv Struct Eng. https://doi.org/10.1177/1369433216630128

    Article  Google Scholar 

  15. Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–73

    Article  Google Scholar 

  16. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  Google Scholar 

  17. Kennedy J, Eberhart R (2002) Particle swarm optimization. In: Icnn95-international conference on neural networks

  18. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83(C):80–98

    Article  Google Scholar 

  19. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68. https://doi.org/10.1177/003754970107600201

    Article  Google Scholar 

  20. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004

    Article  Google Scholar 

  21. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69(3):46–61

    Article  Google Scholar 

  22. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  23. Mirjalili S (2016) SCA: a Sine Cosine Algorithm for solving optimization problems. Knowl Based Syst 96:120–133

    Article  Google Scholar 

  24. Mirjalili S, Mirjalili S, Hatamlou A (2015) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl. https://doi.org/10.1007/s00521-015-1870-7

    Article  Google Scholar 

  25. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Gener Comput Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  26. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  27. Ibrahim A, Ahmed A, Hussein S, Hassanien AE (2018) Fish image segmentation using salp swarm algorithm. Int Conf Adv Mach Learn Technol Appl. https://doi.org/10.1007/978-3-319-74690-6_5

    Article  Google Scholar 

  28. Ali TAA, Xiao Z, Sun J, Mirjalili S, Havyarimana V, Jiang H (2019) Optimal design of IIR wideband digital differentiators and integrators using salp swarm algorithm. Knowl Based Syst 182:104834. https://doi.org/10.1016/j.knosys.2019.07.005

    Article  Google Scholar 

  29. Khishe M, Mohammadi H (2019) Passive sonar target classification using multi-layer perceptron trained by salp swarm algorithm. Ocean Eng 181:98–108. https://doi.org/10.1016/j.oceaneng.2019.04.013

    Article  Google Scholar 

  30. Hasanien HM, El-Fergany AA (2019) Salp swarm algorithm-based optimal load frequency control of hybrid renewable power systems with communication delay and excitation cross-coupling effect. Electr Power Syst Res 176:105938. https://doi.org/10.1016/j.epsr.2019.105938

    Article  Google Scholar 

  31. Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. In: International conference on computational intelligence for modelling, control & automation, & international conference on intelligent agents, web technologies & internet commerce

  32. Shang J, Sun Y, Li S, Liu JX, Zheng CH, Zhang J (2015) An Improved opposition-based learning particle swarm optimization for the detection of SNP–SNP interactions. Biomed Res Int 2015:524821

    Google Scholar 

  33. Ewees AA, Elaziz MA, Houssein EH (2018) Improved grasshopper optimization algorithm using opposition-based learning. Expert Syst Appl 112:S0957417418303701

    Article  Google Scholar 

  34. Elaziz MA, Oliva D, Xiong S (2017) An improved opposition-based sine cosine algorithm for global optimization. Expert Syst Appl 90:S0957417417305201

    Google Scholar 

  35. Khajehzadeh M, Taha MR, Eslami M (2014) Opposition-based firefly algorithm for earth slope stability evaluation. China Ocean Eng 28(5):713–724

    Article  Google Scholar 

  36. Shao P, Wu Z, Zhou T, Dang C (2017) FIR digital filter design using improved particle swarm optimization based on refraction principle. Soft Comput 21(10):2631–2642

    Article  Google Scholar 

  37. Long W, Wu T, Cai S, Liang X, Jiao J, Xu M (2019) A novel grey wolf optimizer algorithm with refraction learning. IEEE Access 7:57805–57819. https://doi.org/10.1109/ACCESS.2019.2910813

    Article  Google Scholar 

  38. Wang G, Jin JY (2019) Moth-flame optimization algorithm fused on refraction principle and opposite-based learning. Comput Eng Appl 55(11):46–51

    Google Scholar 

  39. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Transevolcomput 3(2):82–102

    Google Scholar 

  40. Digalakis JG, Margaritis KG (2001) On benchmarking functions for genetic algorithms. Int J Comput Math 77(4):481–506

    Article  MathSciNet  Google Scholar 

  41. Jiang SF, Wu SY, Dong LQ (2014) A time-domain structural damage detection method based on improved multiparticle swarm coevolution optimization algorithm. Math Probl Eng 2014(2):77–85

    Google Scholar 

  42. Maung TS, Chen HP, Alani AM (2011) Real time structural damage assessment from vibration measurements. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/305/1/012096

    Article  Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Natural Science Foundation of China (No. 41404008), the Guiding Project of Fujian Science and Technology Program (No. 2018Y0021) and Open Foundation of Key Laboratory for Digital Land and Resources of Jiangxi Province (No. DLLJ201911).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Q., Chen, Z., Li, Z. et al. An efficient refracted salp swarm algorithm and its application in structural parameter identification. Engineering with Computers 38, 175–189 (2022). https://doi.org/10.1007/s00366-020-01034-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01034-7

Keywords

Navigation