Skip to main content
Log in

Fractional-Lucas optimization method for evaluating the approximate solution of the multi-dimensional fractional differential equations

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The paper investigates the numerical solution of the multi-dimensional fractional differential equations by applying fractional-Lucas functions (FLFs) and an optimization method. First, the FLFs and their properties are introduced. Then, according to the pseudo-operational matrix of derivative and modified operational matrix of fractional derivative, we present the framework of numerical technique. Also, for computational technique, we evaluate the upper bound of error. As a result, we expound the proposed scheme by solving several kinds of problems. Our computational results demonstrate that the proposed method is powerful and applicable for nonlinear multi-order fractional differential equations, time-fractional convection–diffusion equations with variable coefficients, and time-space fractional diffusion equations with variable coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives. In: Fractional differential equations, to methods of their solution and some of their applications. Academic Press, New York

  2. Chow T (2005) Fractional dynamics of interfaces between soft-nanoparticles and rough substrates. Phys Lett A 342:148–155

    Article  Google Scholar 

  3. Heydari MH, Hooshmandasl MR, Maalek Ghaini FM, Cattani C (2016) Wavelets method for solving fractional optimal control problems. Appl Math Comput 286:139–154

    MathSciNet  MATH  Google Scholar 

  4. Sierociuk D, Dzielinski A, Sarwas G, Petras I, Podlubny I, Skovranek T (2013) Modelling heat transfer in heterogeneous media using fractional calculus. Philos Trans R Soc 371:20130146

    Article  MathSciNet  Google Scholar 

  5. Dzielinski A, Sierociuk D, Sarwas G (2010) Some applications of fractional order calculus. Bull Pol Acad Sci Tech Sci 58:583–92

    MATH  Google Scholar 

  6. Zafarghandi FS, Mohammadi M, Babolian E, Javadi S (2019) Radial basis functions method for solving the fractional diffusion equations. Appl Math Comput 342:224–246

    MathSciNet  MATH  Google Scholar 

  7. Zhao X, Hu X, Cai W, Karniadakis GE (2017) Adaptive finite element method for fractional differential equations using hierarchical matrices. Comput Methods Appl Mech Eng 325:56–76

    Article  MathSciNet  Google Scholar 

  8. Ma YK, Prakash P, Deiveegan A (2019) Optimization method for determining the source term in fractional diffusion equation. Math Comput Simul 155:168–176

    Article  MathSciNet  Google Scholar 

  9. Bhrawy A, Alhamed Y, Baleanu D, Al-Zahrani A (2014) New spectral techniques for systems of fractional differential equations using fractional-order generalized Laguerre orthogonal functions. Fract Calc Appl Anal 17(4):1137–1157

    Article  MathSciNet  Google Scholar 

  10. Dehestani H, Ordokhani Y, Razzaghi M (2020) Pseudo-operational matrix method for the solution of variable-order fractional partial integro-differential equations. Eng Comput. https://doi.org/10.1007/s00366-019-00912-z

    Article  MATH  Google Scholar 

  11. Kazem S, Abbasbandy S, Kumar S (2013) Fractional-order Legendre functions for solving fractional-order differential equations. Appl Math Model 37(7):5498–5510

    Article  MathSciNet  Google Scholar 

  12. Dehestani H, Ordokhani Y, Razzaghi M (2018) Fractional-order Legendre–Laguerre functions and their applications in fractional partial differential equations. Appl Math Comput 336:433–453

    MathSciNet  MATH  Google Scholar 

  13. Dehestani H, Ordokhani Y, Razzaghi M (2020) Fractional-order Bessel wavelet functions for solving variable order fractional optimal control problems with estimation error. Int J Syst Sci 51(6):1032–1052

    Article  MathSciNet  Google Scholar 

  14. Dehestani H, Ordokhani Y, Razzaghi M (2019) Application of the modified operational matrices in multiterm variable-order time-fractional partial differential equations. Math Methods Appl Sci 42:7296–7313

    Article  MathSciNet  Google Scholar 

  15. Dehestani H, Ordokhani Y, Razzaghi M (2019) Fractional-order Bessel functions with various applications. Appl Math 64(6):637–662

    Article  MathSciNet  Google Scholar 

  16. Wang Y, Zhu L (2018) Wang Z (2018) Fractional-order Euler functions for solving fractional integro-differential equations with weakly singular kernel. Adv Differ Equ 1:254

    Article  Google Scholar 

  17. Yuanlu LI (2010) Solving a nonlinear fractional differential equation using Chebyshev wavelets. Commun Nonlinear Sci Numer Simul 15(9):2284–2292

    Article  MathSciNet  Google Scholar 

  18. Heydari MH, Hooshmandasl MR, Cattani C (2018) A new operational matrix of fractional order integration for the Chebyshev wavelets and its application for nonlinear fractional Van der Pol oscillator equation. Proc Math Sci 128(2):26

    Article  MathSciNet  Google Scholar 

  19. Wang L, Ma Y, Meng Z (2014) Haar wavelet method for solving fractional partial differential equations numerically. Appl Math Comput 227:66–76

    MathSciNet  MATH  Google Scholar 

  20. Oruc O (2018) A new numerical treatment based on Lucas polynomials for 1D and 2D sinh-Gordon equation. Commun Nonlinear Sci Numer Simulat 57:14–25

    Article  MathSciNet  Google Scholar 

  21. Koshy T (2001) Fibonacci and Lucas numbers with applications. Wiley, New York

    Book  Google Scholar 

  22. Canuto C, Hussaini MY, Quarteroni A, Zang TA (2006) Spectral methods, fundamentals in single domains. Springer, Berlin

    Book  Google Scholar 

  23. Kreyszig E (1978) Introductory Functional Analysis with Applications. Wiley, New York

    MATH  Google Scholar 

  24. Bhrawy AH, Alofi AS (2013) The operational matrix of fractional integration for shifted Chebyshev polynomials. Appl Math Lett 26:25–31

    Article  MathSciNet  Google Scholar 

  25. Mohammadi F, Cattani C (2018) A generalized fractional-order Legendre wavelet Tau method for solving fractional differential equations. J Comput Appl Math 339:306–316

    Article  MathSciNet  Google Scholar 

  26. Chen Y, Wu Y, Cui Y, Wang Z, Jin D (2010) Wavelet method for a class of fractional convection-diffusion equation with variable coefficients. J Comput Sci 1:146–149

    Article  Google Scholar 

  27. Saadatmandi A, Dehghan M, Azizi MR (2012) The Sinc-Legendre collocation method for a class of fractional convection-diffusion equations with variable coefficients. Commun Nonlinear Sci 17:4125–4136

    Article  MathSciNet  Google Scholar 

  28. Zhou F, Xu X (2016) The third kind Chebyshev wavelets collocation method for solving the time-fractional convection diffusion equations with variable coefficients. Appl Math Comput 280:11–29

    MathSciNet  MATH  Google Scholar 

  29. Firoozjaee MA, Yousefi SA (2018) A numerical approach for fractional partial differential equations by using Ritz approximation. Appl Math Comput 338:711–721

    MathSciNet  MATH  Google Scholar 

  30. Chen Y, Sun Y, Liu L (2014) Numerical solution of fractional partial differential equations with variable coefficients using generalized fractional-order Legendre functions. Appl Math Comput 244:847–858

    MathSciNet  MATH  Google Scholar 

  31. Saadatmandi A, Dehghan M (2011) A tau approach for solution of the space fractional diffusion equation. Comput Math Appl 62:1135–1142

    Article  MathSciNet  Google Scholar 

  32. Khader MM (2011) On the numerical solutions for the fractional diffusion equation. Commun Nonlinear Sci Numer Simul 16:2535–2542

    Article  MathSciNet  Google Scholar 

  33. Ren RF, Li HB, Jiang W, Song MY (2013) An efficient Chebyshev-tau method for solving the space fractional diffusion equations. Appl Math Comput 224:259–267

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the anonymous referees for valuable suggestions that improved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadollah Ordokhani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehestani, H., Ordokhani, Y. & Razzaghi, M. Fractional-Lucas optimization method for evaluating the approximate solution of the multi-dimensional fractional differential equations. Engineering with Computers 38, 481–495 (2022). https://doi.org/10.1007/s00366-020-01048-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01048-1

Keywords

Mathematics Subject Classification

Profiles

  1. Haniye Dehestani
  2. Yadollah Ordokhani
  3. Mohsen Razzaghi