Skip to main content

Variable-order fractal-fractional time delay equations with power, exponential and Mittag-Leffler laws and their numerical solutions

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, a numerical method based on the Lagrangian piece-wise interpolation is proposed to solve variable-order fractal-fractional time delay equations with power law, exponential decay and Mittag-Leffler memories. These operators permit to describe physical phenomena with variable memory and fractal variable dimension. Numerical methods were applied to simulate the variable-order time delay Mackey–Glass and synaptically coupled FitzHugh–Nagumo models. Our numerical simulations display several new attractors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Caputo M, Mainardi F (1971) A new dissipation model based on memory mechanism. Pure Appl Geophys 91:134–147

    MATH  Google Scholar 

  2. Caputo M, Fabricio M (2015) A new definition of fractional derivative without singular Kernel. Progr Fract Differ Appl 1(2):73–85

    Google Scholar 

  3. Kumar D, Singh J, Tanwar K, Baleanu D (2019) A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag–Leffler laws. Int J Heat Mass Transf 138:1222–1227

    Google Scholar 

  4. Kumar D, Singh J, Baleanu D (2020) On the analysis of vibration equation involving a fractional derivative with Mittag–Leffler law. Math Methods Appl Sci 43(1):443–457

    MathSciNet  MATH  Google Scholar 

  5. Kumar D, Singh J, Al Qurashi M, Baleanu D (2019) A new fractional SIRS-SI malaria disease model with application of vaccines, antimalarial drugs, and spraying. Adva Differ Equ 2019(1):1–17

    MathSciNet  Google Scholar 

  6. Kumar D, Singh J, Purohit SD, Swroop R (2019) A hybrid analytical algorithm for nonlinear fractional wave-like equations. Math Model Nat Phenom 14(3):1–14

    MathSciNet  MATH  Google Scholar 

  7. Veeresha P, Prakasha DG, Kumar D, Baleanu D, Singh J (2020) An efficient computational technique for fractional model of generalized Hirota-Satsuma-coupled Korteweg-de Vries and coupled modified Korteweg-de Vries equations. J Comput Nonlinear Dyn 15(7):1–16

    Google Scholar 

  8. Goswami A, Singh J, Kumar D (2019) An efficient analytical approach for fractional equal width equations describing hydro-magnetic waves in cold plasma. Physica A Stat Mech Appl 524:563–575

    MathSciNet  Google Scholar 

  9. Atangana A, Baleanu D (2016) New fractional derivatives with nonlocal and non-singular Kernel. Theory and application to heat transfer model. Therm Sci 20(2):763–769

    Google Scholar 

  10. Samko SG (1995) Fractional integration and differentiation of variable order. Anal Math 21(3):213–236

    MathSciNet  MATH  Google Scholar 

  11. Jia J, Zheng X, Fu H, Dai P, Wang H (2020) A fast method for variable-order space-fractional diffusion equations. Numer Algorithms 1:1–22

    MathSciNet  MATH  Google Scholar 

  12. Chen C, Liu H, Zheng X, Wang H (2020) A two-grid MMOC finite element method for nonlinear variable-order time-fractional mobile/immobile advection-diffusion equations. Comput Math Appl 79(9):2771–2783

    MathSciNet  MATH  Google Scholar 

  13. Heydari MH, Atangana A, Avazzadeh Z, Mahmoudi MR (2020) An operational matrix method for nonlinear variable-order time fractional reaction-diffusion equation involving Mittag–Leffler kernel. Eur Phys J Plus 135(2):1–19

    Google Scholar 

  14. Patnaik S, Hollkamp JP, Semperlotti F (2020) Applications of variable-order fractional operators: a review. Proc R Soc A 476(2234):1–20

    MathSciNet  MATH  Google Scholar 

  15. Owolabi KM, Atangana A, Akgul A (2020) Modelling and analysis of fractal-fractional partial differential equations: application to reaction–diffusion model. Alex Eng J 1:1–17

    Google Scholar 

  16. Wang Y, Chen Y (2020) Shifted legendre polynomials algorithm used for the dynamic analysis of viscoelastic pipes conveying fluid with variable fractional order model. Appl Math Model 81:159–176

    MathSciNet  MATH  Google Scholar 

  17. Avazzadeh Z, Heydari MH, Mahmoudi MR (2020) An approximate approach for the generalized variable-order fractional pantograph equation. Alex Eng J 1:1–13

    Google Scholar 

  18. Heydari MH, Avazzadeh Z (2020) New formulation of the orthonormal Bernoulli polynomials for solving the variable-order time fractional coupled Boussinesq–Burger’s equations. Eng Comput 1:1–9

    Google Scholar 

  19. Ganji RM, Jafari H, Baleanu D (2020) A new approach for solving multi variable orders differential equations with Mittag–Leffler kernel. Chaos Solitons Fractals 130:1–10

    MathSciNet  Google Scholar 

  20. Gu Y, Sun H (2020) A meshless method for solving three-dimensional time fractional diffusion equation with variable-order derivatives. Appl Math Model 78:539–549

    MathSciNet  MATH  Google Scholar 

  21. Sweilam NH, AL-Mekhlafi SM, Alshomrani AS, Baleanu D (2020) Comparative study for optimal control nonlinear variable-order fractional tumor model. Chaos Solitons Fractals 136:1–10

    MathSciNet  Google Scholar 

  22. Patnaik S, Semperlotti F (2020) Variable-order particle dynamics: formulation and application to the simulation of edge dislocations. Philos Trans R Soc A 378(2172):1–20

    MathSciNet  MATH  Google Scholar 

  23. Tolba MF, Saleh H, Mohammad B, Al-Qutayri M, Elwakil AS, Radwan AG (2020) Enhanced FPGA realization of the fractional-order derivative and application to a variable-order chaotic system. Nonlinear Dyn 1:1–12

    Google Scholar 

  24. Ganji RM, Jafari H, Nemati S (2020) A new approach for solving integro-differential equations of variable-order. J Comput Appl Math 1:1–11

    MathSciNet  MATH  Google Scholar 

  25. Keshi FK, Moghaddam BP, Aghili A (2019) A numerical technique for variable-order fractional functional nonlinear dynamic systems. Int J Dyn Control 1:1–8

    MathSciNet  Google Scholar 

  26. Hajipour M, Jajarmi A, Baleanu D, Sun H (2019) On an accurate discretization of a variable-order fractional reaction-diffusion equation. Commun Nonlinear Sci Numer Simul 69:119–133

    MathSciNet  MATH  Google Scholar 

  27. Chen R, Liu F, Anh V (2019) Numerical methods and analysis for a multi-term time-space variable-order fractional advection–diffusion equations and applications. J Comput Appl Math 352:437–452

    MathSciNet  MATH  Google Scholar 

  28. Doha EH, Abdelkawy MA, Amin AZ, Baleanu D (2019) Approximate solutions for solving nonlinear variable-order fractional Riccati differential equations. Nonlinear Anal Model Control 24(2):176–188

    MathSciNet  MATH  Google Scholar 

  29. Zhou C, Li Z, Xie F (2019) Coexisting attractors, crisis route to chaos in a novel 4D fractional-order system and variable-order circuit implementation. Eur Phys J Plus 134(2):1–13

    Google Scholar 

  30. Owolabi KM, Hammouch Z (2019) Mathematical modeling and analysis of two-variable system with noninteger-order derivative. Chaos Interdiscip J Nonlinear Sci 29(1):1–10

    MathSciNet  MATH  Google Scholar 

  31. El-Sayed AA, Agarwal P (2019) Numerical solution of multiterm variable-order fractional differential equations via shifted Legendre polynomials. Math Methods Appl Sci 42(11):3978–3991

    MathSciNet  MATH  Google Scholar 

  32. Haq S, Ghafoor A, Hussain M (2019) Numerical solutions of variable order time fractional (1+1)-and (1+2)-dimensional advection dispersion and diffusion models. Appl Math Comput 360:107–121

    MathSciNet  MATH  Google Scholar 

  33. Heydari MH, Avazzadeh Z, Yang Y (2019) A computational method for solving variable-order fractional nonlinear diffusion-wave equation. Appl Math Comput 352:235–248

    MathSciNet  MATH  Google Scholar 

  34. Lu X, Li H, Chen N (2019) An indicator for the electrode aging of lithium-ion batteries using a fractional variable order model. Electrochim Acta 299:378–387

    Google Scholar 

  35. Atangana A (2017) Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system. Chaos Solitons Fractals 102:396–406

    MathSciNet  MATH  Google Scholar 

  36. Atangana A, Qureshi S (2019) Modeling attractors of chaotic dynamical systems with fractal-fractional operators. Chaos Solitons Fractals 123:320–337

    MathSciNet  MATH  Google Scholar 

  37. Heydari MH (2020) Numerical solution of nonlinear 2D optimal control problems generated by Atangana–Riemann–Liouville fractal-fractional derivative. Appl Math Comput 150:507–518

    MathSciNet  MATH  Google Scholar 

  38. Goufo EFD (2020) Fractal and fractional dynamics for a 3D autonomous and two-wing smooth chaotic system. Alex Eng J 1:1–9

    Google Scholar 

  39. Qureshi S, Atangana A (2020) Fractal-fractional differentiation for the modeling and mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data. Chaos Solitons Fractals 136:1–10

    MathSciNet  Google Scholar 

  40. Abro KA, Atangana A (2020) Mathematical analysis of memristor through fractal-fractional differential operators: a numerical study. Math Methods Appl Sci 1:1–14

    MathSciNet  MATH  Google Scholar 

  41. Abro KA, Atangana A (2020) A comparative study of convective fluid motion in rotating cavity via Atangana–Baleanu and Caputo–Fabrizio fractal-fractional differentiations. Eur Phys J Plus 135(2):1–16

    Google Scholar 

  42. Li Z, Liu Z, Khan MA (2020) Fractional investigation of bank data with fractal-fractional Caputo derivative. Chaos Solitons Fractals 131:1–10

    MathSciNet  Google Scholar 

  43. Heydari MH, Hosseininia M, Avazzadeh Z (2020) An efficient wavelet-based approximation method for the coupled nonlinear fractal-fractional 2D Schrödinger equations. Eng Comput 1:1–16

    MATH  Google Scholar 

  44. Atangana A, Shafiq A (2019) Differential and integral operators with constant fractional order and variable fractional dimension. Chaos Solitons Fractals 127:226–243

    MathSciNet  MATH  Google Scholar 

  45. Mackey MC, Glass L (1977) Oscillation and chaos in physiological control systems. Science 197(4300):287–289

    MATH  Google Scholar 

  46. Wang Q, Lu Q, Chen G, Duan L (2009) Bifurcation and synchronization of synaptically coupled FHN models with time delay. Chaos Solitons Fractals 39(2):918–925

    Google Scholar 

Download references

Acknowledgements

Jesús Emmanuel Solís Pérez acknowledges the support provided by CONACyT through the assignment doctoral fellowship. José Francisco Gómez Aguilar acknowledges the support provided by CONACyT: cátedras CONACyT para jóvenes investigadores 2014 and SNI-CONACyT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Gómez-Aguilar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solís-Pérez, J.E., Gómez-Aguilar, J.F. Variable-order fractal-fractional time delay equations with power, exponential and Mittag-Leffler laws and their numerical solutions. Engineering with Computers 38, 555–577 (2022). https://doi.org/10.1007/s00366-020-01065-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01065-0

Keywords