Skip to main content
Log in

An efficient hybrid sequential approximate optimization method for problems with computationally expensive objective and constraints

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

To improve the computational cost and approximate optimization accuracy of solving engineering optimization problems with both expensive objective and constraints, a hybrid sequential approximate optimization (HSAO) method is proposed. First, the radial basis function neural network (RBFNN) and response surface method (RSM) approximate models fit the optimization objectives and constraints, respectively. Second, the fitted model searches for the optimal solution via global optimization algorithm, and then, the optimal solution is used as a newly added sample point for updating approximation model. The region of the optimal solution is iteratively updated until the optimal solution converges. The performance of the HSAO method is tested on numerical test functions. Compared with the traditional approximate model, adaptive RSM, and adaptive RBFNN approximate optimization, the results indicate that the proposed HSAO method is higher in search ability and efficiency. Finally, the method is applied in S-shaped tube crashworthiness optimization, and has achieved desired results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wu YZ, Yin Q, Jie HX, Wang BX, Zhao JJ (2018) A RBF-based constrained global optimization algorithm for problems with computationally expensive objective and constraints. Struct Multidiscip Optim 58(4):1633–1655. https://doi.org/10.1007/s00158-018-1987-2

    Article  MathSciNet  Google Scholar 

  2. Xie S, Li H, Yang W, Wang N (2017) Crashworthiness optimisation of a composite energy-absorbing structure for railway vehicles. Struct Multidiscip Optim 57(4):1793–1807. https://doi.org/10.1007/s00158-017-1829-7

    Article  Google Scholar 

  3. Costas M, Díaz J, Romera L, Hernández S (2014) A multi-objective surrogate-based optimization of the crashworthiness of a hybrid impact absorber. Int J Mech Sci 88:46–54. https://doi.org/10.1016/j.ijmecsci.2014.07.002

    Article  Google Scholar 

  4. Box GE, Draper NR (1987) Empirical model-building and response surfaces. Wiley, New York

    MATH  Google Scholar 

  5. Kerry K, Hawick KA (1998) Kriging interpolation on high-performance computers. In: International conference on high-performance computing and networking. Springer, Heidelberg, Berlin, pp 429–438

  6. Powell MJ (1992) The theory of radial basis function approximation in 1990. Adv Numer Anal 2:105–210

    MathSciNet  MATH  Google Scholar 

  7. Li YH, Qiang S, Zhuang XY, Kaynak O (2004) Robust and adaptive backstepping control for nonlinear systems using RBF neural networks. IEEE Trans Neural Netw 15(3):693–701. https://doi.org/10.1109/tnn.2004.826215

    Article  Google Scholar 

  8. Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math Compt 37(155):141–158

    Article  MathSciNet  Google Scholar 

  9. Vapnik V, Golowich SE, Smola AJ (1997) Support vector method for function approximation, regression estimation and signal processing. In: Advances in neural information processing systems, pp 281–287

  10. Fang H, Rais-Rohani M, Liu Z, Horstemeyer MF (2005) A comparative study of metamodeling methods for multiobjective crashworthiness optimization. Comput Struct 83(25–26):2121–2136. https://doi.org/10.1016/j.compstruc.2005.02.025

    Article  Google Scholar 

  11. Guo HW, Zhuang XY, Rabczuk T (2019) A deep collocation method for the bending analysis of Kirchhoff plate. CMC-Comput Mat Contin 59(2):433–456. https://doi.org/10.32604/cmc.2019.06660

    Article  Google Scholar 

  12. Anitescu C, Atroshchenko E, Alajlan N, Rabczuk T (2019) Artificial neural network methods for the solution of second order boundary value problems. CMC-Comput Mat Contin 59(1):345–359. https://doi.org/10.32604/cmc.2019.06641

    Article  Google Scholar 

  13. Xiong F, Wang D, Ma Z, Chen S, Lv T, Lu F (2017) Structure-material integrated multi-objective lightweight design of the front end structure of automobile body. Struct Multidiscip Optim 57(2):829–847. https://doi.org/10.1007/s00158-017-1778-1

    Article  Google Scholar 

  14. Chakraborty S, Goswami S, Rabczuk T (2019) A surrogate assisted adaptive framework for robust topology optimization. Comput Meth Appl Mech Eng 346:63–84. https://doi.org/10.1016/j.cma.2018.11.030

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen GD, Han X, Liu GP, Jiang C, Zhao ZH (2012) An efficient multi-objective optimization method for black-box functions using sequential approximate technique. Appl Soft Comput 12(1):14–27. https://doi.org/10.1016/j.asoc.2011.09.011

    Article  Google Scholar 

  16. Ye PC, Pan G (2015) A novel sequential approximate optimization approach using data mining for engineering design optimization. Optim Method Softw 30(6):1255–1275. https://doi.org/10.1080/10556788.2015.1043604

    Article  MathSciNet  MATH  Google Scholar 

  17. Alexandrov NM, Dennis JE, Lewis RM, Torczon V (1998) A trust-region framework for managing the use of approximation models in optimization. Structural optimization 15(1):16–23. https://doi.org/10.1007/bf01197433

    Article  Google Scholar 

  18. Shan SQ, Wang GG (2005) An efficient pareto set identification approach for multiobjective optimization on black-box functions. J Mech Des 127(5):866–874. https://doi.org/10.1115/1.1904639

    Article  Google Scholar 

  19. Huang T, Song X, Liu M (2016) The optimization of the loading path for T-shape tube hydroforming using adaptive radial basis function. Int J Adv Manuf Technol 82(9):1843–1857. https://doi.org/10.1007/s00170-015-7534-z

    Article  Google Scholar 

  20. Zhang JH, Xiao M, Gao L, Chu S (2019) A combined projection-outline-based active learning Kriging and adaptive importance sampling method for hybrid reliability analysis with small failure probabilities. Comput Meth Appl Mech Eng 344:13–33. https://doi.org/10.1016/j.cma.2018.10.003

    Article  MathSciNet  MATH  Google Scholar 

  21. Gu JC, Li WQ, Shu C, Zeng FB (2019) Hybrid meta-model based search method for expensive problems. Appl Soft Comput 77:643–652. https://doi.org/10.1016/j.asoc.2019.01.044

    Article  Google Scholar 

  22. Gan NF, Gu JC (2019) Hybrid meta-model-based design space exploration method for expensive problems. Struct Multidiscip Optim 59(3):907–917. https://doi.org/10.1007/s00158-018-2109-x

    Article  Google Scholar 

  23. Cai YZ, Zhang L, Gu JC, Yue YC, Wang YC (2018) Multiple meta-models based design space differentiation method for expensive problems. Struct Multidiscip Optim 57(6):2249–2258. https://doi.org/10.1007/s00158-017-1854-6

    Article  MathSciNet  Google Scholar 

  24. Tian LL, Gao YK, Fang JG, An XZ (2015) Multi-objective optimisation of hybrid S-shaped rails under oblique impact loading. Int J Heavy Veh Syst 22(2):137–156. https://doi.org/10.1504/ijhvs.2015.070450

    Article  Google Scholar 

  25. Hosseini SM, Arjomandi Rad M, Khalkhali A, Saranjam MJ (2019) Optimal design of the S-rail family for an automotive platform with novel modifications on the product-family optimization process. Thin-Walled Struct 138:143–154. https://doi.org/10.1016/j.tws.2019.01.046

    Article  Google Scholar 

  26. Hosseini-Tehrani P, Nikahd M (2006) Two materials S-frame representation for improving crashworthiness and lightening. Thin-Walled Struct 44(4):407–414. https://doi.org/10.1016/j.tws.2006.04.002

    Article  Google Scholar 

  27. Zhou YJ, Lan FC, Chen JQ (2011) Crashworthiness research on S-shaped front rails made of steel-aluminum hybrid materials. Thin-Walled Struct 49(2):291–297. https://doi.org/10.1016/j.tws.2010.10.007

    Article  Google Scholar 

  28. Zhang C, Saigal A (2007) Crash behavior of a 3D S-shape space frame structure. J Mater Process Technol 191(1):256–259. https://doi.org/10.1016/j.jmatprotec.2007.03.093

    Article  Google Scholar 

  29. Esmaeili-Marzdashti S, Sebaey TA, Pirmohammad S, Esmaeili-Marzdashti S (2017) Crash analysis and design of multi-cell octagonal s-shape members under axial and oblique impacts. Int Ref J Eng Sci 6:37–50

    Google Scholar 

  30. Esmaeili-Marzdashti S, Pirmohammad S, Esmaeili-Marzdashti S (2017) Crashworthiness analysis of s-shaped structures under axial impact loading. Lat Am J Solids Struct 14(5):743–764

    Article  Google Scholar 

  31. Fang JG, Gao YK, Sun GY, Qiu N, Li Q (2015) On design of multi-cell tubes under axial and oblique impact loads. Thin-Walled Struct 95:115–126. https://doi.org/10.1016/j.tws.2015.07.002

    Article  Google Scholar 

  32. Khakhali A, Nariman-zadeh N, Darvizeh A, Masoumi A, Notghi B (2010) Reliability-based robust multi-objective crashworthiness optimisation of S-shaped box beams with parametric uncertainties. Int J Crashworthiness 15(4):443–456. https://doi.org/10.1080/13588261003696458

    Article  Google Scholar 

  33. Kempthorne O (1952) Design and analysis of experiments. Wiley, New York

    MATH  Google Scholar 

  34. Fang JG, Sun GY, Qiu N, Kim NH, Li Q (2017) On design optimization for structural crashworthiness and its state of the art. Struct Multidiscip Optim 55(3):1091–1119. https://doi.org/10.1007/s00158-016-1579-y

    Article  MathSciNet  Google Scholar 

  35. McKay MD, Beckman RJ, Conover WJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2):239–245. https://doi.org/10.2307/1268522

    Article  MathSciNet  MATH  Google Scholar 

  36. Hu X, Chen X, Zhao Y, Yao W (2014) Optimization design of satellite separation systems based on Multi-Island genetic algorithm. Adv Space Res 53(5):870–876. https://doi.org/10.1016/j.asr.2013.12.021

    Article  Google Scholar 

  37. Wang ZP, Ma J, Zhang L (2017) State-of-health estimation for lithium-ion batteries based on the multi-island genetic algorithm and the gaussian process regression. IEEE Access 5:21286–21295. https://doi.org/10.1109/access.2017.2759094

    Article  Google Scholar 

  38. Runarsson TP, Yao X (2000) Stochastic ranking for constrained evolutionary optimization. IEEE Trans Evol Comput 4(3):284–294

    Article  Google Scholar 

  39. Viana FAC, Haftka RT, Steffen V (2009) Multiple surrogates: how cross-validation errors can help us to obtain the best predictor. Struct Multidiscip Optim 39(4):439–457. https://doi.org/10.1007/s00158-008-0338-0

    Article  Google Scholar 

  40. Duan LB, Xiao NC, Hu ZH, Li GY, Cheng AG (2017) An efficient lightweight design strategy for body-in-white based on implicit parameterization technique. Struct Multidiscip Optim 55(5):1927–1943. https://doi.org/10.1007/s00158-016-1621-0

    Article  Google Scholar 

  41. Fang JG, Qiu N, An XZ, Xiong FF, Sun GY, Li Q (2017) Crashworthiness design of a steel-aluminum hybrid rail using multi-response objective-oriented sequential optimization. Adv Eng Softw 112:192–199. https://doi.org/10.1016/j.advengsoft.2017.05.013

    Article  Google Scholar 

  42. Khalkhali A, Masoumi A, Darvizeh A, Jafari M, Shiri A (2011) Experimental and numerical investigation into the quasi-static crushing behaviour of the s-shape square tubes. J Mech 27(4):585–596. https://doi.org/10.1017/jmech.2011.61

    Article  Google Scholar 

  43. Standard S (1995) J211: instrumentation for impact test. Technical Report, Safety Test Instrumentation Stds Comm

Download references

Acknowledgements

The authors are grateful to the projects supported by the National Natural Science Foundation of China [no. 51975244] and Jilin Province and Jilin University Jointly Sponsor Special Foundation [no. SXGJSF2017-2-1-5].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Xie, C. An efficient hybrid sequential approximate optimization method for problems with computationally expensive objective and constraints. Engineering with Computers 38, 727–738 (2022). https://doi.org/10.1007/s00366-020-01093-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01093-w

Keywords

Navigation