Skip to main content
Log in

An analytical solution for vibration analysis of sandwich plates reinforced with graphene nanoplatelets

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this study, the free vibration of a composite sandwich plate reinforced with graphene nanoplatelets (GPLs) enclosed by piezoelectric layers is investigated using an analytical solution. In the framework of the first-order shear deformation plate theory, multilayer functionally graded graphene platelets-reinforced composite plate is assumed. Applying modified Halpin–Tsai model and rule of mixtures, the effective Young’s modulus, mass density and Poisson’s ratio of nanocomposites are predicted. In each individual layer, the weight fraction of GPL nanofillers illustrates a layer-wise variation along the thickness direction either uniformly or non-uniformly GPLs dispersed. Based on Maxwell’s equation, the electric potential in a piezoelectric layer is considered for open and closed circuit boundary conditions. Coupled governing equations of motion and boundary conditions are derived by using the Hamilton’s principle. Four auxiliary scalar functions are introduced to decouple the governing equations of motion and boundary conditions, which are solved analytically by employing Levy-type boundary conditions. The effects of GPLs weight fraction, GPLs distribution patterns, number of layers and aspect ratio are examined in detail. The results show that the best way to predict the most effective reinforcement is to distribute more GPLs with a larger surface area near the top and bottom surfaces of the plate. Besides, adding a small amount of GPLs as reinforcing nanofillers can significantly improve the stiffness of the plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Soutis C (2005) Carbon fiber reinforced plastics in aircraft construction. Mater Sci Eng A 412(1):171–176

    Google Scholar 

  2. Esawi AMK, Farag MM (2007) Carbon nanotube reinforced composites: potential and current challenges. Mater Des 28(9):2394–2401

    Google Scholar 

  3. Yu J-G et al (2015) Graphene nanosheets as novel adsorbents in adsorption, preconcentration and removal of gases, organic compounds and metal ions. Sci Total Environ 502:70–79

    Google Scholar 

  4. Ichikawa K (2013) Functionally graded materials in the 21st century: a workshop on trends and forecasts. Springer Science & Business Media, New York

    Google Scholar 

  5. Rafiee MA et al (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12):3884–3890

    Google Scholar 

  6. Song M et al (2017) Buckling and postbuckling of biaxially compressed functionally graded multilayer graphene nanoplatelet-reinforced polymer composite plates. Int J Mech Sci 131:345–355

    Google Scholar 

  7. Song M, Kitipornchai S, Yang J (2017) Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos Struct 159:579–588

    Google Scholar 

  8. Thai CH et al (2019) Free vibration, buckling and bending analyses of multilayer functionally graded graphene nanoplatelets reinforced composite plates using the NURBS formulation. Compos Struct 220:749–759

    Google Scholar 

  9. Anamagh MR, Bediz B (2019) Three-dimensional dynamics of functionally graded and laminated doubly-curved composite structures having arbitrary geometries and boundary conditions. Compos B Eng 172:533–546

    Google Scholar 

  10. Zhao Z et al (2017) Bending and vibration analysis of functionally graded trapezoidal nanocomposite plates reinforced with graphene nanoplatelets (GPLs). Compos Struct 180:799–808

    Google Scholar 

  11. Tornabene F et al (2019) Multiscale approach for three-phase CNT/polymer/fiber laminated nanocomposite structures. Polym Compos 40(S1):E102–E126

    Google Scholar 

  12. Pashmforoush F (2019) Statistical analysis on free vibration behavior of functionally graded nanocomposite plates reinforced by graphene platelets. Compos Struct 213:14–24

    Google Scholar 

  13. Nguyen NV, Lee J, Nguyen-Xuan H (2019) Active vibration control of GPLs-reinforced FG metal foam plates with piezoelectric sensor and actuator layers. Compos B Eng 172:769–784

    Google Scholar 

  14. Saidi AR, Bahaadini R, Majidi-Mozafari K (2019) On vibration and stability analysis of porous plates reinforced by graphene platelets under aerodynamical loading. Compos B Eng 164:778–799

    Google Scholar 

  15. Bahaadini R, Saidi AR (2019) Aerothermoelastic flutter analysis of pre-twisted thin-walled rotating blades reinforced with functionally graded carbon nanotubes. Eur J Mech A Solids 75:285–306

    MathSciNet  MATH  Google Scholar 

  16. Bahaadini R, Saidi AR (2018) Aeroelastic analysis of functionally graded rotating blades reinforced with graphene nanoplatelets in supersonic flow. Aerosp Sci Technol 80:381–391

    Google Scholar 

  17. Arabjamaloei Z et al (2019) Vibration analysis of rotating composite blades with piezoelectric layers in hygrothermal environment. Eur Phys J Plus 134(11):556

    Google Scholar 

  18. Ebrahimi F et al (2019) Vibration analysis of porous magneto-electro-elastically actuated carbon nanotube-reinforced composite sandwich plate based on a refined plate theory. Engineering with computers. Springer, New York

    Google Scholar 

  19. Tornabene F et al (2016) Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells. Compos B Eng 89:187–218

    Google Scholar 

  20. Bahaadini R et al (2019) Vibration analysis of functionally graded graphene reinforced porous nanocomposite Shells. Int J Appl Mech 11:1950068

    Google Scholar 

  21. Bahaadini R, Saidi AR, Hosseini M (2018) Dynamic stability of fluid-conveying thin-walled rotating pipes reinforced with functionally graded carbon nanotubes. Acta Mech 229(12):5013–5029

    MathSciNet  MATH  Google Scholar 

  22. Bahaadini R, Saidi AR (2018) Stability analysis of thin-walled spinning reinforced pipes conveying fluid in thermal environment. Eur J Mech A Solids 72:298–309

    MathSciNet  MATH  Google Scholar 

  23. Bahaadini R, Saidi AR (2018) On the stability of spinning thin-walled porous beams. Thin Walled Struct 132:604–615

    MATH  Google Scholar 

  24. Safaei B, Ahmed N, Fattahi A (2019) Free vibration analysis of polyethylene/CNT plates. Eur Phys J Plus 134(6):271

    Google Scholar 

  25. Fattahi A, Mondali M (2014) Theoretical study of stress transfer in platelet reinforced composites. J Theor Appl Mech 52(1):3–14

    Google Scholar 

  26. Fattahi A, Safaei B (2017) Buckling analysis of CNT-reinforced beams with arbitrary boundary conditions. Microsyst Technol 23(10):5079–5091

    Google Scholar 

  27. Safaei B, Khoda FH, Fattahi A (2019) Non-classical plate model for single-layered graphene sheet for axial buckling. Adv Nano Res 7:265–275

    Google Scholar 

  28. Fattahi A, Sahmani S (2017) Size dependency in the axial postbuckling behavior of nanopanels made of functionally graded material considering surface elasticity. Arab J Sci Eng 42(11):4617–4633

    MathSciNet  MATH  Google Scholar 

  29. Sahmani S, Fattahi A, Ahmed N (2019) Nonlinear torsional buckling and postbuckling analysis of cylindrical silicon nanoshells incorporating surface free energy effects. Microsyst Technol 25(9):3533–3546

    Google Scholar 

  30. Fattahi A, Sahmani S (2017) Nonlocal temperature-dependent postbuckling behavior of FG-CNT reinforced nanoshells under hydrostatic pressure combined with heat conduction. Microsyst Technol 23(10):5121–5137

    Google Scholar 

  31. Sahmani S, Fattahi A, Ahmed N (2020) Surface elastic shell model for nonlinear primary resonant dynamics of FG porous nanoshells incorporating modal interactions. Int J Mech Sci 165:105203

    Google Scholar 

  32. Alizadeh M, Fattahi AM (2019) Non-classical plate model for FGMs. Eng Comput 35(1):215–228

    Google Scholar 

  33. Fattahi A, Mondali M (2013) Analytical study on elastic transition in short-fiber composites for plane strain case. J Mech Sci Technol 27(11):3419–3425

    Google Scholar 

  34. Sahmani S, Fattahi A, Ahmed N (2019) Radial postbuckling of nanoscaled shells embedded in elastic foundations based on Ru's surface stress elasticity theory. Mech Based Des Struct Mach 47(6):787–806

    Google Scholar 

  35. Sahmani S, Fattahi A (2018) Development of efficient size-dependent plate models for axial buckling of single-layered graphene nanosheets using molecular dynamics simulation. Microsyst Technol 24(2):1265–1277

    Google Scholar 

  36. Sahmani S, Fattahi A (2017) Size-dependent nonlinear instability of shear deformable cylindrical nanopanels subjected to axial compression in thermal environments. Microsyst Technol 23(10):4717–4731

    Google Scholar 

  37. Sahmani S, Fattahi A (2017) Imperfection sensitivity of the size-dependent nonlinear instability of axially loaded FGM nanopanels in thermal environments. Acta Mech 228(11):3789–3810

    MathSciNet  MATH  Google Scholar 

  38. Houari MSA et al (2018) Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter. Steel Compos Struct 28(1):13–24

    Google Scholar 

  39. Bennai R et al (2019) Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory. Wind Struct 28(1):49–62

    MathSciNet  Google Scholar 

  40. Issad MN et al (2018) Free vibration and buckling analysis of orthotropic plates using a new two variable refined plate theory. Geomech Eng 15(1):711–719

    Google Scholar 

  41. Bessaim A et al (2015) A nonlocal quasi-3D trigonometric plate model for free vibration behaviour of micro/nanoscale plates. Struct Eng Mech 56(2):223–240

    Google Scholar 

  42. Bessaim A et al (2013) A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets. J Sandw Struct Mater 15(6):671–703

    Google Scholar 

  43. Daikh AA et al (2020) On vibration of functionally graded sandwich nanoplates in the thermal environment. J Sandw Struct Mater. https://doi.org/10.1177/1099636220909790

    Article  Google Scholar 

  44. Daikh AA, Houari MSA, Tounsi A (2019) Buckling analysis of porous FGM sandwich nanoplates due to heat conduction via nonlocal strain gradient theory. Eng Res Express 1(1):015022

    Google Scholar 

  45. Farsangi MA, Saidi A, Batra R (2013) Analytical solution for free vibrations of moderately thick hybrid piezoelectric laminated plates. J Sound Vib 332(22):5981–5998

    Google Scholar 

  46. Hosseini M, Bahaadini R, Khalili-Parizi Z (2019) Structural instability of non-conservative functionally graded micro-beams tunable with piezoelectric layers. J Intell Mater Syst Struct 30(4):593–605

    Google Scholar 

  47. Bahaadini R, Hosseini M, Khalili-Parizi Z (2019) Electromechanical stability analysis of smart double-nanobeam systems. Eur Phys J Plus 134(7):320

    Google Scholar 

  48. Ghorbanpour Arani A, Khani Arani H, Khoddami Maraghi Z (2015) Vibration analysis of rectangular magnetostrictive plate considering thickness variation in two directions. Int J Appl Mech 7(04):1550059

    MATH  Google Scholar 

  49. Hajmohammad MH et al (2019) A new numerical approach and visco-refined zigzag theory for blast analysis of auxetic honeycomb plates integrated by multiphase nanocomposite facesheets in hygrothermal environment. Eng Comput 35(4):1141–1157

    Google Scholar 

  50. Hwang W-S, Park HC, Hwang W (1993) Vibration control of a laminated plate with piezoelectric sensor/actuator: finite element formulation and modal analysis. J Intell Mater Syst Struct 4(3):317–329

    Google Scholar 

  51. Liang X, Batra R (1997) Changes in frequencies of a laminated plate caused by embedded piezoelectric layers. AIAA J 35(10):1672–1673

    Google Scholar 

  52. He X et al (2001) Active control of FGM plates with integrated piezoelectric sensors and actuators. Int J Solids Struct 38(9):1641–1655

    MATH  Google Scholar 

  53. Khorshidvand A et al (2014) Buckling analysis of a porous circular plate with piezoelectric sensor–actuator layers under uniform radial compression. Acta Mech 225(1):179–193

    MathSciNet  MATH  Google Scholar 

  54. Askari M, Saidi AR, Rezaei AS (2017) On natural frequencies of Levy-type thick porous-cellular plates surrounded by piezoelectric layers. Compos Struct 179:340–354

    Google Scholar 

  55. Zhang L, Song Z, Liew K (2016) Computation of aerothermoelastic properties and active flutter control of CNT reinforced functionally graded composite panels in supersonic airflow. Comput Methods Appl Mech Eng 300:427–441

    MathSciNet  MATH  Google Scholar 

  56. Li J et al (2019) Active vibration control of functionally graded piezoelectric material plate. Compos Struct 207:509–518

    Google Scholar 

  57. Tanzadeh H, Amoushahi H (2019) Buckling and free vibration analysis of piezoelectric laminated composite plates using various plate deformation theories. Eur J Mech A Solids 74:242–256

    MathSciNet  MATH  Google Scholar 

  58. Heydari A (2018) Exact vibration and buckling analyses of arbitrary gradation of nano-higher order rectangular beam. Steel Compos Struct 28(5):589–606

    Google Scholar 

  59. Sidhoum IA et al (2017) An original HSDT for free vibration analysis of functionally graded plates. Steel Compos Struct 25(6):735–745

    Google Scholar 

  60. Sahmani S, Fattahi AM, Ahmed NA (2019) Analytical treatment on the nonlocal strain gradient vibrational response of postbuckled functionally graded porous micro-/nanoplates reinforced with GPL. Engineering with computers. Springer, New York

    Google Scholar 

  61. Khiloun M et al (2019) Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT. Engineering with computers. Springer, New York

    Google Scholar 

  62. Javed S et al (2018) Free vibration of cross-ply laminated plates based on higher-order shear deformation theory. Steel Compos Struct 26(4):473–484

    Google Scholar 

  63. Bahaadini R, Hosseini M, Amiri M (2020) Dynamic stability of viscoelastic nanotubes conveying pulsating magnetic nanoflow under magnetic field. Engineering with computers. Springer, New York, pp 1–13

    Google Scholar 

  64. Majidi-Mozafari K, Hosseini M (2019) Stability analysis of a functionally graded CNT reinforced composite plate integrated with piezoelectric layers subjected to supersonic airflow. AUT J Mech Eng. https://doi.org/10.22060/AJME.2019.16343.5815

    Article  Google Scholar 

  65. Jiang G, Li F, Zhang C (2018) Postbuckling and nonlinear vibration of composite laminated trapezoidal plates. Steel Compos Struct 26(1):17–29

    Google Scholar 

  66. Yang J, Wu H, Kitipornchai S (2017) Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos Struct 161:111–118

    Google Scholar 

  67. Baferani AH, Saidi A, Ehteshami H (2011) Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation. Compos Struct 93(7):1842–1853

    Google Scholar 

  68. Jin G et al (2014) Three-dimensional exact solution for the free vibration of arbitrarily thick functionally graded rectangular plates with general boundary conditions. Compos Struct 108:565–577

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Bahaadini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

In Eq. (25), the kth layer reinforced by GPLs is placed between the points \(z = z_{k}\) and \(z = z_{k + 1}\) in the thickness direction. In Eq. (26), the stiffness coefficients can be introduced as below:

$$ \begin{gathered} \left( {A_{11} ,A_{12} } \right) = \mathop \sum \limits_{k = 1}^{{N_{L} }} \mathop \int \limits_{{z_{k} }}^{{z_{k + 1} }} \left( {Q_{11}^{\left( k \right)} ,Q_{12}^{\left( k \right)} } \right){\text{d}}z + 2\mathop \int \limits_{h}^{{h + h_{p} }} \left( {\overline{c}_{11} ,\overline{c}_{12} } \right){\text{d}}z + \eta_{1} \hfill \\ A_{66} = \mathop \sum \limits_{k = 1}^{{N_{L} }} \mathop \int \limits_{{z_{k} }}^{{z_{k + 1} }} Q_{66}^{\left( k \right)} {\text{ d}}z + \mathop \int \limits_{h}^{{h + h_{p} }} \left( {\overline{c}_{11} - \overline{c}_{12} } \right) {\text{d}}z \hfill \\ \left( {B_{11} ,B_{12} ,B_{66} } \right) = \mathop \sum \limits_{k = 1}^{{N_{L} }} \mathop \int \limits_{{z_{k} }}^{{z_{k + 1} }} \left( {Q_{11}^{(k)} , Q_{12}^{(k)} , Q_{66}^{(k)} } \right)z{\text{d}}z \hfill \\ \left( {D_{11} ,D_{12} } \right) = \mathop \sum \limits_{k = 1}^{{N_{L} }} \mathop \int \limits_{{z_{k} }}^{{z_{k + 1} }} \left( {Q_{11}^{(k)} , Q_{12}^{(k)} } \right)z^{2} {\text{d}}z + 2\mathop \int \limits_{h}^{{h + h_{p} }} \left( {\overline{c}_{11} ,\overline{c}_{12} } \right)z^{2} {\text{d}}z + \eta_{2} \hfill \\ D_{66} = \mathop \sum \limits_{k = 1}^{{N_{L} }} \mathop \int \limits_{{z_{k} }}^{{z_{k + 1} }} Q_{66}^{(k)} z^{2} {\text{d}}z + \mathop \int \limits_{h}^{{h + h_{p} }} \left( {\overline{c}_{11} - \overline{c}_{12} } \right)z^{2} {\text{d}}z \hfill \\ A_{55} = \mathop \sum \limits_{k = 1}^{{N_{L} }} \mathop \int \limits_{{z_{k} }}^{{z_{k + 1} }} Q_{66}^{(k)} {\text{d}}z + 2\mathop \int \limits_{h}^{{h + h_{p} }} \overline{c}_{55} {\text{d}}z. \hfill \\ \end{gathered} $$
(32)

Appendix B

In Eqs. (15) and (18), the definitions of constant quantities are expressed as follows:

$$ \Gamma_{1} = 2h_{p} \left( {e_{15} + \overline{e}_{31} } \right),\quad \Gamma_{2} = 2e_{15} h_{p} ,\quad \Gamma_{3} = \frac{{16\overline{\Xi }_{33} }}{{h_{p} }}, $$
(33)

for open circuit condition,

$$ \begin{gathered} \eta_{1} = \frac{{2\overline{e}_{31}^{2} h_{p} }}{{\overline{\Xi }_{33} }}, \eta_{2} = \frac{{\overline{e}_{31}^{2} h_{p} \left( {2h + h_{p} } \right)\left( {h + h_{p} } \right)}}{{\overline{\Xi }_{33} }}, \overline{\Gamma }_{1} = \frac{{\overline{e}_{31} e_{15} h_{p}^{2} \left( {h + h_{p} } \right)}}{{\overline{\Xi }_{33} }} , \hfill \\ \tilde{\Gamma }_{1} = - \frac{8}{3}\overline{e}_{31} (3h + h_{p} ), \tilde{\Gamma }_{2} = \frac{16}{3}e_{15} h_{p} \hfill \\ \overline{\Gamma }_{2} = - \frac{{\overline{e}_{31} \Xi_{11} h_{p}^{2} }}{{\overline{\Xi }_{33} }}\left( {h + h_{p} } \right), \tilde{\Gamma }_{2} = - \frac{{16h_{p} \Xi_{11} }}{3}, \hfill \\ \end{gathered} $$
(34)

and for closed circuit condition

$$ \begin{gathered} \eta_{1} = 0,\quad \eta_{2} = 0, \quad \overline{\Gamma }_{1} = 0,\quad \tilde{\Gamma }_{1} = - \frac{4}{3}\overline{e}_{31} h_{p} ,\quad \tilde{\Gamma }_{2} = - \frac{4}{3}e_{15} h_{p} \hfill \\ \overline{\Gamma }_{2} = 0,\quad \tilde{\Gamma }_{2} = - \frac{{4h_{p} \Xi_{11} }}{3}. \hfill \\ \end{gathered} $$
(35)

Appendix C

$$ \begin{gathered} X_{1} = \frac{{K^{2} A_{55} }}{{\tilde{\Gamma }_{2} }}, X_{2} = - \frac{{\overline{\Gamma }_{1} }}{{\tilde{\Gamma }_{2} }}, X_{3} = \frac{{K^{2} A_{55} }}{{\tilde{\Gamma }_{2} }}, X4 = \frac{{I_{0} \omega_{m}^{2} }}{{\tilde{\Gamma }_{2} }}, \hfill \\ X_{5} = - \frac{{ - \frac{{B_{11}^{2} }}{{A_{11} }} + D_{11} + \left( {\tilde{\Gamma }_{2} - \tilde{\Gamma }_{1} } \right)X_{2} + \overline{\Gamma }_{1} }}{{ - \frac{{B_{11} I_{0} \omega_{m}^{2} }}{{A_{11} }} + I_{1} \omega_{m}^{2} }} \hfill \\ X_{6} = - \frac{{ - \frac{{B_{11} I_{1} \omega_{m}^{2} }}{{A_{11} }} - K^{2} A_{55} + \left( {\tilde{\Gamma }_{2} - \tilde{\Gamma }_{1} } \right)X_{1} + I_{2} \omega_{m}^{2} }}{{ - \frac{{B_{11} I_{0} \omega_{m}^{2} }}{{A_{11} }} + I_{1} \omega_{m}^{2} }} \hfill \\ X_{7} = - \frac{{ - K^{2} A_{55} + \left( {\tilde{\Gamma }_{2} - \tilde{\Gamma }_{1} } \right)X_{3} }}{{ - \frac{{B_{11} I_{0} \omega_{m}^{2} }}{{A_{11} }} + I_{1} \omega_{m}^{2} }}, X_{8} = - \frac{{\left( {\tilde{\Gamma }_{2} - \tilde{\Gamma }_{1} } \right)X_{4} }}{{ - \frac{{B_{11} I_{0} \omega_{m}^{2} }}{{A_{11} }} + I_{1} \omega_{m}^{2} }},X_{9} = - \frac{{\Gamma_{1} + \tilde{\Gamma }_{3} X_{1} }}{{\Gamma_{3} }}, \hfill \\ X_{10} = - \frac{{\overline{\Gamma }_{2} + \tilde{\Gamma }_{3} X_{2} }}{{\Gamma_{3} }}, X_{11} = - \frac{{\Gamma_{2} + \tilde{\Gamma }_{3} X_{3} }}{{\Gamma_{3} }} \hfill \\ X_{12} = - \frac{{\tilde{\Gamma }_{3} X_{4} }}{{\Gamma_{3} }}, X_{13} = \frac{{A_{55} K^{2} - \tilde{\Gamma }_{2} X_{12} }}{{\tilde{\Gamma }_{2} X_{10} }}, X_{14} = \frac{{K^{2} A_{55} }}{{\tilde{\Gamma }_{2} X_{10} }} \hfill \\ X_{15} = - \frac{{\tilde{\Gamma }_{2} X_{9} + \overline{\Gamma }_{1} }}{{\tilde{\Gamma }_{2} X_{10} }}, X_{16} = - \frac{{X_{11} }}{{X_{10} }}, X_{17} = \frac{{I_{0} \omega_{m}^{2} }}{{\tilde{\Gamma }_{2} X_{10} }} \hfill \\ \overline{X}_{13} = \frac{{ - I_{0} \omega_{m}^{2} X_{7} - A_{11} X_{8} }}{{A_{11} X_{5} }}, \overline{X}_{14} = \frac{{ - I_{0} \omega_{m}^{2} X_{6} - I_{1} \omega_{m}^{2} }}{{A_{11} X_{5} }}, \overline{X}_{15} = \frac{{ - I_{0} \omega_{m}^{2} X_{5} - A_{11} X_{6} - B_{11} }}{{A_{11} X_{5} }}, \hfill \\ \overline{X}_{16} = - \frac{{X_{7} }}{{X_{5} }}, \overline{X}_{17} = - \frac{{I_{0} \omega_{m}^{2} X_{8} }}{{A_{11} X_{5} }} \hfill \\ X_{18} = \frac{{X_{13} - \overline{X}_{13} }}{{\overline{X}_{15} - X_{15} }}, X_{19} = \frac{{X_{14} - \overline{X}_{14} }}{{\overline{X}_{15} - X_{15} }}, X_{20} = \frac{{X_{16} - \overline{X}_{16} }}{{\overline{X}_{15} - X_{15} }}, X_{21} = \frac{{X_{17} - \overline{X}_{17} }}{{\overline{X}_{15} - X_{15} }} \hfill \\ \zeta_{1} = \frac{{X_{20} }}{{X_{19}^{2} - X_{14} - X_{15} X_{19} }} \hfill \\ \zeta_{2} = - X_{19} \zeta_{1} + \zeta_{7} \hfill \\ \zeta_{3} = - X_{19} \zeta_{7} + \zeta_{8} - X_{20} \hfill \\ \zeta_{4} = - X_{19} \zeta_{8} + \zeta_{9} - X_{18} \hfill \\ \zeta_{5} = - X_{19} \zeta_{9} - X_{21} \hfill \\ \zeta_{6} = \zeta_{1} \hfill \\ \zeta_{7} = - \frac{{ - X_{15} X_{20} + X_{19} X_{20} - X_{16} + X_{18} }}{{X_{19}^{2} - X_{14} - X_{15} X_{19} }} \hfill \\ \zeta_{8} = - \frac{{ - X_{15} X_{18} + X_{18} X_{19} - X_{13} + X_{21} }}{{X_{19}^{2} - X_{14} - X_{15} X_{19} }} \hfill \\ \zeta_{9} = - \frac{{ - X_{15} X_{21} + X_{19} X_{21} - X_{17} }}{{X_{19}^{2} - X_{14} - X_{15} X_{19} }} \hfill \\ \overline{\zeta }_{1} = A_{66} \overline{\zeta }_{4} \hfill \\ \overline{\zeta }_{2} = I_{0} \omega_{m}^{2} \overline{\zeta }_{4} + A_{66} \overline{\zeta }_{5} + B_{66} \hfill \\ \overline{\zeta }_{3} = I_{0} \omega_{m}^{2} \overline{\zeta }_{5} + I_{1} \omega_{m}^{2} \hfill \\ \overline{\zeta }_{4} = \frac{{\frac{{B_{66}^{2} }}{{A_{66} }} - D_{66} }}{{\left( { - \frac{{I_{0} B_{66} }}{{A_{66} }} + I_{1} } \right)\omega_{m}^{2} }} \hfill \\ \overline{\zeta }_{5} = \frac{{\frac{{I_{1} \omega_{m}^{2} B_{66} }}{{A_{66} }} - I_{2} \omega_{m}^{2} + K^{2} A_{55} }}{{\left( { - \frac{{I_{0} B_{66} }}{{A_{66} }} + I_{1} } \right)\omega_{m}^{2} }}. \hfill \\ \end{gathered} $$
(36)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majidi-Mozafari, K., Bahaadini, R., Saidi, A.R. et al. An analytical solution for vibration analysis of sandwich plates reinforced with graphene nanoplatelets. Engineering with Computers 38, 2107–2123 (2022). https://doi.org/10.1007/s00366-020-01183-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01183-9

Keywords

Navigation