Skip to main content
Log in

Semi-numerical simulation for vibrational responses of the viscoelastic imperfect annular system with honeycomb core under residual pressure

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This composition investigates the frequency analysis of sandwich imperfect viscoelastic disks with graphene nano-platelets (GPLs)-reinforced viscoelastic composite (GPLRVC) face sheets and honeycomb core. The honeycomb core is made of aluminum because of its high stiffness and low weight. The modified Halpin–Tsai model and rule of the mixture have been utilized to provide the effective material constant of the composite layers. Through employing Hamilton’s principle, the governing equations of the structure are accordingly discerned and resolved by utilizing the Generalized Differential Quadrature Method (GDQM). Throughout this investigation, viscoelastic properties have been modeled in accordance with Kelvin–Voigt viscoelasticity. The deflection as the function of time is capable of being resolved through employing the fourth-order Runge–Kutta numerical method. Afterwards, a parametric study is conducted to discern the effects of the FG patterns, outer to inner radius ratio, hexagonal core angle, thickness to length ratio of the GPLs, the weight fraction of GPLs, FG face sheet thickness ratio, the thickness of honeycomb core to inner radius ratio, tensile, imperfect coefficient, and in-plane force on the frequency of the sandwich viscoelastic disk with honeycomb core and FG-GPLRVC face sheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Xu W, Qu S, Zhao L, Zhang H (2020) An improved adaptive sliding mode observer for a middle and high-speed rotors tracking. IEEE Trans Power Electron. https://doi.org/10.1109/TPEL.2020.3000785

    Article  Google Scholar 

  2. Qu S, Zhao L, Xiong Z (2020) Cross-layer congestion control of wireless sensor networks based on fuzzy sliding mode control. Neural Comput Appl. https://doi.org/10.1007/s00521-020-04758-1

    Article  Google Scholar 

  3. Zhang H, Qu S, Li H, Luo J, Xu W (2020) A moving shadow elimination method based on fusion of multi-feature. IEEE Access 8:63971–63982

    Google Scholar 

  4. Zhu Q (2019) Research on road traffic situation awareness system based on image big data. IEEE Intell Syst 35(1):18–26

    Google Scholar 

  5. Ni T, Liu D, Xu Q, Huang Z, Liang H, Yan A (2020) Architecture of Cobweb-Based Redundant TSV for Clustered Faults. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 28 (7):1736–1739

  6. Guo H, Li X, Zhu Q, Zhang Z, Liu Y, Li Z, Wen H, Li Y, Tang J, Liu J (2020) Imaging nano-defects of metal waveguides using the microwave cavity interference enhancement method. Nanotechnology 31(45):455203

    Google Scholar 

  7. Guo H, Qian K, Cai A, Tang J, Liu J (2019) Ordered gold nanoparticle arrays on the tip of silver wrinkled structures for single molecule detection. Sens Actuators B Chem 300:126846

    Google Scholar 

  8. Yan H, Xue X, Chen W, Wu X, Dong J, Liu Y, Wang Z (2020) Reversible Na+ insertion/extraction in conductive polypyrrole-decorated NaTi2 (PO4) 3 nanocomposite with outstanding electrochemical property. Appl Surf Sci 530:147295

    Google Scholar 

  9. Hu X, Chong H-Y, Wang X (2019) Sustainability perceptions of off-site manufacturing stakeholders in Australia. J Clean Prod 227:346–354

    Google Scholar 

  10. Zhu J, Wu P, Chen M, Kim MJ, Wang X, Fang T (2020) Automatically processing IFC clipping representation for BIM and GIS integration at the process level. Appl Sci 10(6):209

    Google Scholar 

  11. Zhu J, Wang X, Wang P, Wu Z, Kim MJ (2019) Integration of BIM and GIS: Geometry from IFC to shapefile using open-source technology. Autom Constr 102:105–119

    Google Scholar 

  12. Wu C, Wang X, Chen M, Kim MJ (2019) Differential received signal strength based RFID positioning for construction equipment tracking. Adv Eng Inform 42:100960

    Google Scholar 

  13. Zhu J, Wang X, Chen M, Wu P, Kim MJ (2019) Integration of BIM and GIS: IFC geometry transformation to shapefile using enhanced open-source approach. Autom Constr 106:102859

    Google Scholar 

  14. Tsai Y-H, Wang J, Chien W-T, Wei C-Y, Wang X, Hsieh S-H (2019) A BIM-based approach for predicting corrosion under insulation. Autom Constr 107:102923

    Google Scholar 

  15. He L, Chen Y, Zhao H, Tian P, Xue Y, Chen L (2018) Game-based analysis of energy-water nexus for identifying environmental impacts during Shale gas operations under stochastic input. Sci Total Environ 627:1585–1601

    Google Scholar 

  16. Ye X, Wang S, Zhang S, Xiao X, Xu F (2020) The compaction effect on the performance of a compaction-grouted soil nail in sand. Acta Geotech. https://doi.org/10.1007/s11440-020-01017-4

    Article  Google Scholar 

  17. Khiloun M, Bousahla AA, Kaci A, Bessaim A, Tounsi A, Mahmoud S (2019) Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT. Eng Comput. https://doi.org/10.1007/s00366-019-00732-1

    Article  Google Scholar 

  18. Luo X, Hu H, Pan Z, Pei F, Qian H, Miao K, Guo S, Wang W, Feng G (2020) Efficient and stable catalysis of hollow Cu9S5 nanospheres in the Fenton-like degradation of organic dyes. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.122735

    Article  Google Scholar 

  19. Zuo C, Sun J, Li J, Asundi A, Chen Q (2020) Wide-field high-resolution 3d microscopy with fourier ptychographic diffraction tomography. Opt Lasers Eng 128:106003

    Google Scholar 

  20. Zuo C, Li J, Sun J, Fan Y, Zhang J, Lu L, Zhang R, Wang B, Huang L, Chen Q (2020) Transport of intensity equation: a tutorial. Opt Lasers Eng. https://doi.org/10.1016/j.optlaseng.2020.106187

    Article  Google Scholar 

  21. Jiang Q, Shao F, Gao W, Chen Z, Jiang G, Ho Y-S (2018) Unified no-reference quality assessment of singly and multiply distorted stereoscopic images. IEEE Trans Image Process 28(4):1866–1881

    MathSciNet  Google Scholar 

  22. Zuo C, Chen Q, Tian L, Waller L, Asundi A (2015) Transport of intensity phase retrieval and computational imaging for partially coherent fields: the phase space perspective. Opt Lasers Eng 71:20–32

    Google Scholar 

  23. Shariati A, Habibi M, Tounsi A, Safarpour H, Safa M (2020) Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties. Eng Comput. https://doi.org/10.1007/s00366-020-01024-9

    Article  Google Scholar 

  24. Moayedi H, Ebrahimi F, Habibi M, Safarpour H, Foong LK (2020) Application of nonlocal strain–stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell. Eng Comput. https://doi.org/10.1007/s00366-020-01002-1

    Article  Google Scholar 

  25. Li J, Tang F, Habibi M (2020) Bi-directional thermal buckling and resonance frequency characteristics of a GNP-reinforced composite nanostructure. Eng Comput. https://doi.org/10.1007/s00366-020-01110-y

    Article  Google Scholar 

  26. Ebrahimi F, Mahesh V (2019) Chaotic dynamics and forced harmonic vibration analysis of magneto-electro-viscoelastic multiscale composite nanobeam. Eng Comput. https://doi.org/10.1007/s00366-019-00865-3

    Article  Google Scholar 

  27. Al-Furjan M, Safarpour H, Habibi M, Safarpour M, Tounsi A (2020) A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method. Eng Comput. https://doi.org/10.1007/s00366-020-01088-7

    Article  Google Scholar 

  28. Gholipour A, Ghayesh MH, Hussain S (2020) A continuum viscoelastic model of Timoshenko NSGT nanobeams. Eng Comput. https://doi.org/10.1007/s00366-020-01017-8

    Article  Google Scholar 

  29. Shamsaddini Lori E, Ebrahimi F, Elianddy Bin Supeni E, Habibi M, Safarpour H (2020) The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer. Eng Comput. https://doi.org/10.1007/s00366-020-01004-z

    Article  Google Scholar 

  30. Suryawanshi VJ, Pawar AC, Palekar SP, Rade KA (2020) Defect detection of composite honeycomb structure by vibration analysis technique. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2019.12.192

  31. Mozafari H, Najafian S (2019) Vibration analysis of foam filled honeycomb sandwich panel–numerical study. Aust J Mech Engring 17(3):191–198

    Google Scholar 

  32. Xu G-d, Zeng T, Cheng S, Wang X-h, Zhang K (2019) Free vibration of composite sandwich beam with graded corrugated lattice core. Compos Struct 229:111466

    Google Scholar 

  33. Amini A, Mohammadimehr M, Faraji A (2019) Active control to reduce the vibration amplitude of the solar honeycomb sandwich panels with CNTRC facesheets using piezoelectric patch sensor and actuator. Steel Compos Struct 32(5):671–686

    Google Scholar 

  34. Sobhy M (2020) Differential quadrature method for magneto-hygrothermal bending of functionally graded graphene/Al sandwich-curved beams with honeycomb core via a new higher-order theory. J Sandw Struct Mater. https://doi.org/10.1177/1099636219900668

    Article  Google Scholar 

  35. Wang Y-j, Zhang Z-j, Xue X-m, Zhang L (2019) Free vibration analysis of composite sandwich panels with hierarchical honeycomb sandwich core. Thin-Walled Struct 145:106425

    Google Scholar 

  36. Zhang Z-j, Han B, Zhang Q-c, Jin F (2017) Free vibration analysis of sandwich beams with honeycomb-corrugation hybrid cores. Compos Struct 171:335–344

    Google Scholar 

  37. Zhang Y, Li Y (2019) Nonlinear dynamic analysis of a double curvature honeycomb sandwich shell with simply supported boundaries by the homotopy analysis method. Compos Struct 221:110884

    Google Scholar 

  38. Zine A, Bousahla AA, Bourada F, Benrahou KH, Tounsi A, Adda Bedia E, Mahmoud S, Tounsi A (2020) Bending analysis of functionally graded porous plates via a refined shear deformation theory. Comput Concrete 26(1):63–74

    Google Scholar 

  39. Kaddari M, Kaci A, Bousahla AA, Tounsi A, Bourada F, Bedia EA, Al-Osta MA (2020) A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis. Comput Concrete 25(1):37

    Google Scholar 

  40. Addou FY, Meradjah M, Bousahla AA, Benachour A, Bourada F, Tounsi A, Mahmoud S (2019) Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT. Comput Concrete 24(4):347–367

    Google Scholar 

  41. Medani M, Benahmed A, Zidour M, Heireche H, Tounsi A, Bousahla AA, Tounsi A, Mahmoud S (2019) Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle. Steel Compos Struct 32(5):595–610

    Google Scholar 

  42. Berghouti H, Adda Bedia E, Benkhedda A, Tounsi A (2019) Vibration analysis of nonlocal porous nanobeams made of functionally graded material. Adv Nano Res 7(5):351–364

    Google Scholar 

  43. Moayedi H, Hayati S (2018a) Applicability of a CPT-based neural network solution in predicting load-settlement responses of bored pile. Int J Geomech. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001125

    Article  Google Scholar 

  44. Moayedi H, Hayati S (2018b) Modelling and optimization of ultimate bearing capacity of strip footing near a slope by soft computing methods. Appl Soft Comput 66:208–219

    Google Scholar 

  45. Moayedi H, Rezaei A (2019) An artificial neural network approach for under-reamed piles subjected to uplift forces in dry sand. Neural Comput Appl 31(2):327–336. https://doi.org/10.1007/s00521-017-2990-z

    Article  Google Scholar 

  46. Sheng D, Zhang S, Yu Z, Zhang J (2013) Assessing frost susceptibility of soils using PCHeave. Cold Reg Sci Technol 95:27–38. https://doi.org/10.1016/j.coldregions.2013.08.003

    Article  Google Scholar 

  47. Zhang S, Leng W, Zhang F, Xiong Y (2012) A simple thermo-elastoplastic model for geomaterials. Int J Plast 34:93–113. https://doi.org/10.1016/j.ijplas.2012.01.011

    Article  Google Scholar 

  48. Zhang S, Teng J, He Z, Liu Y, Liang S, Yao Y, Sheng D (2016) Canopy effect caused by vapour transfer in covered freezing soils. Géotechnique 66(11):927–940. https://doi.org/10.1680/jgeot.16.P.016

    Article  Google Scholar 

  49. Zuo C, Sun J, Li J, Zhang J, Asundi A, Chen Q (2017) High-resolution transport-of-intensity quantitative phase microscopy with annular illumination. Sci Rep 7(1):1–22

    Google Scholar 

  50. Wen D, Zhang X, Liu X, Lei J (2017) Evaluating the consistency of current mainstream wearable devices in health monitoring: a comparison under free-living conditions. J Med Internet Res 19(3):e68

    Google Scholar 

  51. Xie J, Wen D, Liang L, Jia Y, Gao L, Lei J (2018) Evaluating the validity of current mainstream wearable devices in fitness tracking under various physical activities: comparative study. JMIR mHealth uHealth 6(4):e94

    Google Scholar 

  52. Liu C, Wang F, He L, Deng X, Liu J, Wu Y (2020) Experimental and numerical investigation on dynamic responses of the umbrella membrane structure excited by heavy rainfall. J Vib Control. https://doi.org/10.1177/1077546320932691

    Article  Google Scholar 

  53. Liu C, Wang F, Deng X, Pang S, Liu J, Wu Y, Xu Z (2020) Hailstone-induced dynamic responses of pretensioned umbrella membrane structure. Adv Struct Eng. https://doi.org/10.1177/1369433220940149

    Article  Google Scholar 

  54. Yu H, He Z, Qian G, Gong X, Qu X (2020) Research on the anti-icing properties of silicone modified polyurea coatings (SMPC) for asphalt pavement. Constr Build Mater 242:117793

    Google Scholar 

  55. Gunasekaran V, Pitchaimani J, Chinnapandi LBM (2020) Analytical investigation on free vibration frequencies of polymer nano composite plate: effect of graphene grading and non-uniform edge loading. Mater Today Commun 24:100910. https://doi.org/10.1016/j.mtcomm.2020.100910

    Article  Google Scholar 

  56. Tran TT, Tran VK, Le PB, Phung VM, Do VT, Nguyen HN (2020) Forced vibration analysis of laminated composite shells reinforced with graphene nanoplatelets using finite element method. Adv Civil Eng. https://doi.org/10.1155/2020/1471037

    Article  Google Scholar 

  57. Javani M, Kiani Y, Eslami M (2020) Thermal buckling of FG graphene platelet reinforced composite annular sector plates. Thin-Walled Struct 148:106589

    Google Scholar 

  58. Bai B, Li H, Zhang W, Cui Y (2020) Application of extremum response surface method-based improved substructure component modal synthesis in mistuned turbine bladed disk. J Sound Vib 472:115210. https://doi.org/10.1016/j.jsv.2020.115210

    Article  Google Scholar 

  59. Yang B, Kitipornchai S, Yang Y-F, Yang J (2017) 3D thermo-mechanical bending solution of functionally graded graphene reinforced circular and annular plates. Appl Math Model 49:69–86. https://doi.org/10.1016/j.apm.2017.04.044

    Article  MathSciNet  MATH  Google Scholar 

  60. Liu D, Li Z, Kitipornchai S, Yang J (2019) Three-dimensional free vibration and bending analyses of functionally graded graphene nanoplatelets-reinforced nanocomposite annular plates. Compos Struct 229:111453. https://doi.org/10.1016/j.compstruct.2019.111453

    Article  Google Scholar 

  61. Wang Y, Zeng R, Safarpour M (2020) Vibration analysis of FG-GPLRC annular plate in a thermal environment. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2020.1719508

    Article  Google Scholar 

  62. Safarpour M, Ghabussi A, Ebrahimi F, Habibi M, Safarpour H (2020) Frequency characteristics of FG-GPLRC viscoelastic thick annular plate with the aid of GDQM. Thin-Walled Struct 150:106683. https://doi.org/10.1016/j.tws.2020.106683

    Article  Google Scholar 

  63. Wu H, Zhu J, Kitipornchai S, Wang Q, Ke L-L, Yang J (2020) Large amplitude vibration of functionally graded graphene nanocomposite annular plates in thermal environments. Compos Struct 239:112047. https://doi.org/10.1016/j.compstruct.2020.112047

    Article  Google Scholar 

  64. Moayedi H, Habibi M, Safarpour H, Safarpour M, Foong L (2020) Buckling and frequency responses of a graphene nanoplatelet reinforced composite microdisk. Int J Appl Mech. https://doi.org/10.1142/S1758825119501023

    Article  Google Scholar 

  65. Refrafi S, Bousahla AA, Bouhadra A, Menasria A, Bourada F, Tounsi A, Bedia E, Mahmoud S, Benrahou KH, Tounsi A (2020) Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations. Comput Concrete 25(4):311–325

    Google Scholar 

  66. Rahmani MC, Kaci A, Bousahla AA, Bourada F, Tounsi A, Bedia E, Mahmoud S, Benrahou KH, Tounsi A (2020) Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory. Comput Concrete 25(3):225–244

    Google Scholar 

  67. Tounsi A, Al-Dulaijan S, Al-Osta MA, Chikh A, Al-Zahrani M, Sharif A, Tounsi A (2020) A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation. Steel Compos Struct 34(4):511

    Google Scholar 

  68. Boussoula A, Boucham B, Bourada M, Bourada F, Tounsi A, Bousahla A, Tounsi A (2019) A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates. Smart Struct Syst. https://doi.org/10.12989/sss.2020.25.2.197

    Article  Google Scholar 

  69. Hussain M, Naeem MN, Khan MS, Tounsi A (2020) Computer-aided approach for modelling of FG cylindrical shell sandwich with ring supports. Comput Concrete 25(5):411–425

    Google Scholar 

  70. Balubaid M, Tounsi A, Dakhel B, Mahmoud S (2019) Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory. Comput Concrete 24(6):579–586

    Google Scholar 

  71. Boutaleb S, Benrahou KH, Bakora A, Algarni A, Bousahla AA, Tounsi A, Tounsi A, Mahmoud S (2019) Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT. Adv Nano Res 7(3):191

    Google Scholar 

  72. Chaabane LA, Bourada F, Sekkal M, Zerouati S, Zaoui FZ, Tounsi A, Derras A, Bousahla AA, Tounsi A (2019) Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation. Struct Eng Mech 71(2):185–196

    Google Scholar 

  73. Zarga D, Tounsi A, Bousahla AA, Bourada F, Mahmoud S (2019) Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory. Steel Compos Struct 32(3):389–410

    Google Scholar 

  74. Ghayesh MH (2018a) Functionally graded microbeams: simultaneous presence of imperfection and viscoelasticity. Int J Mech Sci 140:339–350

    Google Scholar 

  75. Ghayesh MH (2019a) Viscoelastic dynamics of axially FG microbeams. Int J Eng Sci 135:75–85

    MathSciNet  MATH  Google Scholar 

  76. Zhao J, Xie F, Wang A, Shuai C, Tang J, Wang Q (2019) Dynamics analysis of functionally graded porous (FGP) circular, annular and sector plates with general elastic restraints. Compos B Eng 159:20–43

    Google Scholar 

  77. Liu C, Huang X, Wu Y-Y, Deng X, Liu J, Zheng Z, Hui D (2020) Review on the research progress of cement-based and geopolymer materials modified by graphene and graphene oxide. Nanotechnol Rev 9(1):155–169

    Google Scholar 

  78. Liu C, Deng X, Liu J, Peng T, Yang S, Zheng Z (2020) Dynamic response of saddle membrane structure under hail impact. Eng Struct 214:110597

    Google Scholar 

  79. Liao Q, Wei W, Zuo H, Li X, Yang Z, Xiao S, Wu G (2020) Interfacial bonding enhancement and properties improvement of carbon/copper composites based on nickel doping. Compos Interfaces. https://doi.org/10.1080/09276440.2020.1798681

    Article  Google Scholar 

  80. Yang Z, Xu P, Wei W, Gao G, Zhou N, Wu G (2020) Influence of the crosswind on the pantograph arcing dynamics. IEEE Trans Plasma Sci 48(8):2822–2830

    Google Scholar 

  81. Yu H, Dai W, Qian G, Gong X, Zhou D, Li X, Zhou X (2020) The NOx degradation performance of nano-TiO2 coating for asphalt pavement. Nanomaterials 10(5):897

    Google Scholar 

  82. Yu H, Zhu X, Qian G, Gong X, Nie X (2020) Evaluation of phosphorus slag (PS) content and particle size on the performance modification effect of asphalt. Constr Build Mater 256:119334

    Google Scholar 

  83. Zhu W, Zhang Z, Chen D, Chai W, Chen D, Zhang J, Zhang C, Hao Y (2020) Interfacial voids trigger carbon-based, all-inorganic CsPbIBr 2 perovskite solar cells with photovoltage exceeding 1.33 V. Nano-Micro Lett 12:1–14

    Google Scholar 

  84. Yu X, Zhang J, Zhang J, Niu J, Zhao J, Wei Y, Yao B (2019) Photocatalytic degradation of ciprofloxacin using Zn-doped Cu2O particles: analysis of degradation pathways and intermediates. Chem Eng J 374:316–327

    Google Scholar 

  85. Wang M, Guo Y, Wang B, Luo H, Zhang X, Wang Q, Zhang Y, Wu H, Liu H, Dou S (2020) An engineered self-supported electrocatalytic cathode and dendrite-free composite anode based on 3D double-carbon hosts for advanced Li–SeS 2 batteries. J Mater Chem A 8(6):2969–2983

    Google Scholar 

  86. Jing P, Wang Q, Wang B, Gao X, Zhang Y, Wu H (2020) Encapsulating yolk-shell FeS2@ carbon microboxes into interconnected graphene framework for ultrafast lithium/sodium storage. Carbon 159:366–377

    Google Scholar 

  87. Gao N, Cheng B, Hou H, Zhang R (2018) Mesophase pitch based carbon foams as sound absorbers. Mater Lett 212:243–246

    Google Scholar 

  88. Ashraf MA, Liu Z, Peng W-X, Jermsittiparsert K, Hosseinzadeh G, Hosseinzadeh R (2020) Combination of sonochemical and freeze-drying methods for synthesis of graphene/Ag-doped TiO2 nanocomposite: a strategy to boost the photocatalytic performance via well distribution of nanoparticles between graphene sheets. Ceram Int 46(6):7446–7452

    Google Scholar 

  89. Zhao H, Li Y, Song Q, Liu S, Ma Q, Ma L, Shu X (2019) Catalytic reforming of volatiles from co-pyrolysis of lignite blended with corn straw over three different structures of iron ores. J Anal Appl Pyrol 144:104714

    Google Scholar 

  90. Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  91. Ghavanloo E, Fazelzadeh SA (2011) Flow-thermoelastic vibration and instability analysis of viscoelastic carbon nanotubes embedded in viscous fluid. Phys E 44(1):17–24

    Google Scholar 

  92. Bourada F, Bousahla AA, Tounsi A, Bedia E, Mahmoud S, Benrahou KH, Tounsi A (2020) Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation. Comput Concrete 25(6):485–495

    Google Scholar 

  93. Matouk H, Bousahla AA, Heireche H, Bourada F, Bedia E, Tounsi A, Mahmoud S, Tounsi A, Benrahou K (2020) Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory. Adv Nano Res 8(4):293–305

    Google Scholar 

  94. Bousahla AA, Bourada F, Mahmoud S, Tounsi A, Algarni A, Bedia E, Tounsi A (2020) Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory. Comput Concrete 25(2):155–166

    Google Scholar 

  95. Draiche K, Bousahla AA, Tounsi A, Alwabli AS, Tounsi A, Mahmoud S (2019) Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory. Computers and Concrete 24(4):369–378

    Google Scholar 

  96. Hosseini-Hashemi S, Eśhaghi M, Taher HRD (2010) An exact analytical solution for freely vibrating piezoelectric coupled circular/annular thick plates using Reddy plate theory. Compos Struct 92(6):1333–1351. https://doi.org/10.1016/j.compstruct.2009.11.006

    Article  Google Scholar 

  97. Ghiasian S, Kiani Y, Sadighi M, Eslami M (2014) Thermal buckling of shear deformable temperature dependent circular/annular FGM plates. Int J Mech Sci 81:137–148. https://doi.org/10.1016/j.ijmecsci.2014.02.007

    Article  Google Scholar 

  98. Daikh AA, Drai A, Bensaid I, Houari MSA, Tounsi A (2020) On vibration of functionally graded sandwich nanoplates in the thermal environment. J Sand Struct Mater. https://doi.org/10.1177/1099636220909790

    Article  Google Scholar 

  99. Ghayesh MH (2019b) Dynamical analysis of multilayered cantilevers. Commun Nonlinear Sci Numer Simul 71:244–253

    MathSciNet  MATH  Google Scholar 

  100. Ghayesh MH (2018b) Dynamics of functionally graded viscoelastic microbeams. Int J Eng Sci 124:115–131

    MathSciNet  MATH  Google Scholar 

  101. Ghayesh MH, Farokhi H (2020) Extremely large dynamics of axially excited cantilevers. Thin-Walled Struct. https://doi.org/10.1016/j.tws.2019.106275

    Article  MATH  Google Scholar 

  102. Ghayesh MH (2019c) Mechanics of viscoelastic functionally graded microcantilevers. Eur J Mech-A/Solids 73:492–499

    MathSciNet  MATH  Google Scholar 

  103. Farokhi H, Ghayesh MH (2019) Motion limiting nonlinear dynamics of initially curved beams. Thin-Walled Structures. https://doi.org/10.1007/s11071-018-4452-2

    Article  Google Scholar 

  104. Ghabussi A, Ashrafi N, Shavalipour A, Hosseinpour A, Habibi M, Moayedi H, Babaei B, Safarpour H (2019) Free vibration analysis of an electro-elastic GPLRC cylindrical shell surrounded by viscoelastic foundation using modified length-couple stress parameter. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2019.1705166

    Article  Google Scholar 

  105. Shariati A, Ghabussi A, Habibi M, Safarpour H, Safarpour M, Tounsi A, Safa M (2020) Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation. Thin-Walled Struct 154:106840. https://doi.org/10.1016/j.tws.2020.106840

    Article  Google Scholar 

  106. Jermsittiparsert K, Ghabussi A, Forooghi A, Shavalipour A, Habibi M, won Jung D (2020) Safa M (2020) Critical voltage, thermal buckling and frequency characteristics of a thermally affected GPL reinforced composite microdisk covered with piezoelectric actuator. Mech Based Des Struct Mach 10(1080/15397734):1748052

    Google Scholar 

  107. Moayedi H, Darabi R, Ghabussi A, Habibi M, Foong LK (2020) Weld orientation effects on the formability of tailor welded thin steel sheets. Thin-Walled Struct 149:106669. https://doi.org/10.1016/j.tws.2020.106669

    Article  Google Scholar 

  108. Ghabussi A, Habibi M, NoormohammadiArani O, Shavalipour A, Moayedi H, Safarpour H (2020) Frequency characteristics of a viscoelastic graphene nanoplatelet–reinforced composite circular microplate. J Vib Control. https://doi.org/10.1177/1077546320923930

    Article  Google Scholar 

  109. Gao N-S, Guo X-Y, Cheng B-Z, Zhang Y-N, Wei Z-Y, Hou H (2019) Elastic wave modulation in hollow metamaterial beam with acoustic black hole. IEEE Access 7:124141–124146. https://doi.org/10.1109/ACCESS.2019.2938250

    Article  Google Scholar 

  110. Gao N, Wei Z, Zhang R, Hou H (2019) Low-frequency elastic wave attenuation in a composite acoustic black hole beam. Appl Acoust 154:68–76. https://doi.org/10.1016/j.apacoust.2019.04.029

    Article  Google Scholar 

  111. Gao N, Zhang Y (2019) A low frequency underwater metastructure composed by helix metal and viscoelastic damping rubber. J Vib Control 25(3):538–548. https://doi.org/10.1177/1077546318788446

    Article  Google Scholar 

  112. Gao N, Hou H, Wu JH (2018) A composite and deformable honeycomb acoustic metamaterial. Int J Mod Phys B 32(20):1850204. https://doi.org/10.1142/S0217979218502041

    Article  Google Scholar 

  113. Gao N, Wu JH, Yu L, Hou H (2016) Ultralow frequency acoustic bandgap and vibration energy recovery in tetragonal folding beam phononic crystal. Int J Mod Phys B 30(18):1650111. https://doi.org/10.1142/S0217979216501113

    Article  Google Scholar 

  114. Tian X, Song Z, Wang J (2019) Study on the propagation law of tunnel blasting vibration in stratum and blasting vibration reduction technology. Soil Dyn Earthquake Eng 126:105813. https://doi.org/10.1016/j.soildyn.2019.105813

    Article  Google Scholar 

  115. Mou B, Bai Y, Patel V (2020) Post-local buckling failure of slender and over-design circular CFT columns with high-strength materials. Eng Struct 210:110197. https://doi.org/10.1016/j.engstruct.2020.110197

    Article  Google Scholar 

  116. Guo C, Hu M, Li Z, Duan F, He L, Zhang Z, Marchetti F, Du M (2020) Structural hybridization of bimetallic zeolitic imidazolate framework (ZIF) nanosheets and carbon nanofibers for efficiently sensing α-synuclein oligomers. Sens Actuators, B: Chem 309:127821. https://doi.org/10.1016/j.snb.2020.127821

    Article  Google Scholar 

  117. Al-Furjan M, Dehini R, Khorami M, Habibi M, won Jung D (2020) On the dynamics of the ultra-fast rotating cantilever orthotropic piezoelectric nanodisk based on nonlocal strain gradient theory. Compos Struct. https://doi.org/10.1016/j.compstruct.2020.112990

    Article  Google Scholar 

  118. Wang Z, Yu S, Xiao Z, Habibi M (2020) Frequency and buckling responses of a high-speed rotating fiber metal laminated cantilevered microdisk. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2020.1824284

    Article  Google Scholar 

  119. Al-Furjan M, Oyarhossein MA, Habibi M, Safarpour H, Jung DW (2020) Wave propagation simulation in an electrically open shell reinforced with multi-phase nanocomposites. Eng Comput. https://doi.org/10.1007/s00366-020-01167-9

    Article  Google Scholar 

  120. Al-Furjan M, Oyarhossein MA, Habibi M, Safarpour H, Jung DW, Tounsi A (2020) On the wave propagation of the multi-scale hybrid nanocomposite doubly curved viscoelastic panel. Compos Struct. https://doi.org/10.1016/j.compstruct.2020.112947

    Article  Google Scholar 

  121. Liu Z, Wu X, Yu M, Habibi M (2020) Large-amplitude dynamical behavior of multilayer graphene platelets reinforced nanocomposite annular plate under thermo-mechanical loadings. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2020.1815544

    Article  Google Scholar 

  122. Al-Furjan M, Mohammadgholiha M, Alarifi IM, Habibi M, Safarpour H (2020) On the phase velocity simulation of the multi curved viscoelastic system via an exact solution framework. Eng Comput. https://doi.org/10.1007/s00366-020-01152-2

    Article  Google Scholar 

  123. Shahverdi H, Barati MR, Hakimelahi B (2019) Post-buckling analysis of honeycomb core sandwich panels with geometrical imperfection and graphene reinforced nano-composite face sheets. Mater Res Express 6(9):095017

    Google Scholar 

  124. Habibi M, Hashemi R, Ghazanfari A, Naghdabadi R, Assempour A (2018) Forming limit diagrams by including the M-K model in finite element simulation considering the effect of bending. Proc Inst Mech Eng Part L J Mater Des Appl 232(8):625–636

    Google Scholar 

  125. Habibi M, Hashemi R, Sadeghi E, Fazaeli A, Ghazanfari A, Lashini H (2016) Enhancing the mechanical properties and formability of low carbon steel with dual-phase microstructures. J Mater Eng Perform 25(2):382–389

    Google Scholar 

  126. Alipour M, Torabi MA, Sareban M, Lashini H, Sadeghi E, Fazaeli A, Habibi M, Hashemi R (2019) Finite element and experimental method for analyzing the effects of martensite morphologies on the formability of DP steels. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2019.1633343

    Article  Google Scholar 

  127. Habibi M, Ghazanfari A, Assempour A, Naghdabadi R, Hashemi R (2017) Determination of forming limit diagram using two modified finite element models. Mech Eng 48(4):141–144

    Google Scholar 

  128. Ghazanfari A, Assempour A, Habibi M, Hashemi R (2016) Investigation on the effective range of the through thickness shear stress on forming limit diagram using a modified Marciniak-Kuczynski model. Modares Mech Eng 16(1):137–143

    Google Scholar 

  129. Hosseini S, Habibi M, Assempour A (2018) Experimental and numerical determination of forming limit diagram of steel-copper two-layer sheet considering the interface between the layers. Modares Mech Eng 18(6):174–181

    Google Scholar 

Download references

Acknowledgements

This paper is supported by Shaanxi Innovation Capability Support Plan (Grant: 2020PT-027) of Shaanxi Provincial Key Research and Development Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bandar Alzahrani or Mostafa Habibi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Alzahrani, B., Baharom, S. et al. Semi-numerical simulation for vibrational responses of the viscoelastic imperfect annular system with honeycomb core under residual pressure. Engineering with Computers 38 (Suppl 5), 3699–3724 (2022). https://doi.org/10.1007/s00366-020-01191-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01191-9

Keywords

Navigation