Skip to main content
Log in

On the vibration of nanobeams with consistent two-phase nonlocal strain gradient theory: exact solution and integral nonlocal finite-element model

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Recently, it has been proved that the common nonlocal strain gradient theory has inconsistence behaviors. The order of the differential nonlocal strain gradient governing equations is less than the number of all mandatory boundary conditions, and therefore, there is no solution for these differential equations. Given these, for the first time, transverse vibrations of nanobeams are analyzed within the framework of the two-phase local/nonlocal strain gradient (LNSG) theory, and to this aim, the exact solution as well as finite-element model are presented. To achieve the exact solution, the governing differential equations of LNSG nanobeams are derived by transformation of the basic integral form of the LNSG to its equal differential form. Furthermore, on the basis of the integral LNSG, a shear-locking-free finite-element (FE) model of the LNSG Timoshenko beams is constructed by introducing a new efficient higher order beam element with simple shape functions which can consider the influence of strains gradient as well as maintain the shear-locking-free property. Agreement between the exact results obtained from the differential LNSG and those of the FE model, integral LNSG, reveals that the LNSG is consistent and can be utilized instead of the common nonlocal strain gradient elasticity theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Figure. 4
Figure. 5

Similar content being viewed by others

References

  1. Lu P, Lee H, Lu C, Zhang P (2006) Dynamic properties of flexural beams using a nonlocal elasticity model. J Appl Phys 99(7):073510

    Google Scholar 

  2. Wang C, Zhang Y, He X (2007) Vibration of nonlocal Timoshenko beams. Nanotechnology 18(10):105401

    Google Scholar 

  3. Thai S, Thai H-T, Vo TP (2017) Patel VI. A simple shear deformation theory for nonlocal beams. Compos Struct 183:262–270

    Google Scholar 

  4. Phadikar J, Pradhan S (2010) Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates. Comput Mater Sci 49(3):492–499

    Google Scholar 

  5. Eringen AC (1972) Nonlocal polar elastic continua. Int J Eng Sci 10(1):1–16

    MathSciNet  MATH  Google Scholar 

  6. Eringen AC, Edelen D (1972) On nonlocal elasticity. Int J Eng Sci 10(3):233–248

    MathSciNet  MATH  Google Scholar 

  7. Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710

    Google Scholar 

  8. Eringen AC (2002) Nonlocal continuum field theories. Springer, New York

    MATH  Google Scholar 

  9. Reddy J (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45(2):288–307

    MATH  Google Scholar 

  10. Ece M, Aydogdu M (2007) Nonlocal elasticity effect on vibration of in-plane loaded double-walled carbon nanotubes. Acta Mech 190(1):185–195

    MATH  Google Scholar 

  11. Thai H-T (2012) A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int J Eng Sci 52:56–64

    MathSciNet  MATH  Google Scholar 

  12. Eltaher M, Emam SA, Mahmoud F (2012) Free vibration analysis of functionally graded size-dependent nanobeams. Appl Math Comput 218(14):7406–7420

    MathSciNet  MATH  Google Scholar 

  13. Ebrahimi F, Barati MR, Civalek Ö (2019) Application of Chebyshev-Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures. Eng Comput. 29:1–12

    Google Scholar 

  14. Karami B, Janghorban M, Tounsi A (2019) Galerkin’s approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions. Eng Comput 35(4):1297–1316

    Google Scholar 

  15. Sahmani S, Fattahi A, Ahmed N (2019) Analytical mathematical solution for vibrational response of postbuckled laminated FG-GPLRC nonlocal strain gradient micro-/nanobeams. Eng Comput 35(4):1173–1189

    Google Scholar 

  16. Romano G, Barretta R (2017) Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams. Compos Part B Eng 114:184–188

    Google Scholar 

  17. Pinnola FP, Vaccaro MS, Barretta R, de Sciarra FM (2020) Random vibrations of stress-driven nonlocal beams with external damping. Meccanica 29:1–16

    Google Scholar 

  18. Challamel N, Zhang Z, Wang C, Reddy J, Wang Q, Michelitsch T et al (2014) On nonconservativeness of Eringen’s nonlocal elasticity in beam mechanics: correction from a discrete-based approach. Arch Appl Mech 84(9–11):1275–1292

    MATH  Google Scholar 

  19. Xu X-J, Deng Z-C, Zhang K, Xu W (2016) Observations of the softening phenomena in the nonlocal cantilever beams. Compos Struct 145:43–57

    Google Scholar 

  20. Fernández-Sáez J, Zaera R, Loya J, Reddy J (2016) Bending of Euler-Bernoulli beams using Eringen’s integral formulation: a paradox resolved. Int J Eng Sci 99:107–116

    MathSciNet  MATH  Google Scholar 

  21. Romano G, Barretta R, Diaco M, de Sciarra FM (2017) Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. Int J Mech Sci 121:151–156

    Google Scholar 

  22. Pisano A, Sofi A, Fuschi P (2009) Nonlocal integral elasticity: 2D finite element based solutions. Int J Solids Struct 46(21):3836–3849

    MATH  Google Scholar 

  23. Taghizadeh M, Ovesy H, Ghannadpour S (2016) Beam buckling analysis by nonlocal integral elasticity finite element method. Int J Struct Stab Dyn 16(06):1550015

    MathSciNet  MATH  Google Scholar 

  24. Khodabakhshi P, Reddy J (2015) A unified integro-differential nonlocal model. Int J Eng Sci 95:60–75

    MathSciNet  MATH  Google Scholar 

  25. Tuna M, Kirca M (2016a) Exact solution of Eringen’s nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams. Int J Eng Sci 105:80–92

    MathSciNet  MATH  Google Scholar 

  26. Tuna M, Kirca M (2016b) Exact solution of Eringen’s nonlocal integral model for vibration and buckling of Euler-Bernoulli beam. Int J Eng Sci 107:54–67

    MATH  Google Scholar 

  27. Romano G, Barretta R (2016) Comment on the paper “Exact solution of Eringen’s nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams” by Meral Tuna & Mesut Kirca. Int J Eng Sci 109:240–242

    MathSciNet  MATH  Google Scholar 

  28. Tuna M, Kirca M (2017a) Respond to the comment letter by Romano and Barretta on the paper “Exact solution of Eringen’s nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams.” Int J Eng Sci 116:141–144

    MathSciNet  MATH  Google Scholar 

  29. Tuna M, Kirca M (2017b) Bending, buckling and free vibration analysis of Euler-Bernoulli nanobeams using Eringen’s nonlocal integral model via finite element method. Compos Struct 179:269–284

    Google Scholar 

  30. Eptaimeros K, Koutsoumaris CC, Tsamasphyros G (2016) Nonlocal integral approach to the dynamical response of nanobeams. Int J Mech Sci 115:68–80

    Google Scholar 

  31. Naghinejad M, Ovesy HR (2017) Free vibration characteristics of nanoscaled beams based on nonlocal integral elasticity theory. J Vib Control 24:1077546317717867

    MathSciNet  Google Scholar 

  32. Fakher M, Rahmanian S, Hosseini-Hashemi S (2019) On the carbon nanotube mass nanosensor by integral form of nonlocal elasticity. Int J Mech Sci 150:445–457

    Google Scholar 

  33. Norouzzadeh A, Ansari R (2017) Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity. Physica E 88:194–200

    Google Scholar 

  34. Norouzzadeh A, Ansari R, Rouhi H (2017) Pre-buckling responses of Timoshenko nanobeams based on the integral and differential models of nonlocal elasticity: an isogeometric approach. Appl Phys A 123(5):330

    Google Scholar 

  35. Norouzzadeh A, Ansari R, Rouhi H (2018a) Isogeometric vibration analysis of small-scale Timoshenko beams based on the most comprehensive size-dependent theory. Sci Iran 25(3):1864–1878

    Google Scholar 

  36. Norouzzadeh A, Ansari R, Rouhi H (2018b) Isogeometric analysis of Mindlin nanoplates based on the integral formulation of nonlocal elasticity. Multidiscip Model Mater Struct 14(5):810–827

    Google Scholar 

  37. Ansari R, Torabi J, Norouzzadeh A (2018) Bending analysis of embedded nanoplates based on the integral formulation of Eringen’s nonlocal theory using the finite element method. Phys B 534:90–97

    Google Scholar 

  38. Faraji-Oskouie M, Norouzzadeh A, Ansari R, Rouhi H (2019) Bending of small-scale Timoshenko beams based on the integral/differential nonlocal-micropolar elasticity theory: a finite element approach. Appl Math Mech 40(6):767–782

    MathSciNet  MATH  Google Scholar 

  39. Wang Y, Zhu X, Dai H (2016) Exact solutions for the static bending of Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model. AIP Adv 6(8):085114

    Google Scholar 

  40. Wang Y, Huang K, Zhu X, Lou Z (2018) Exact solutions for the bending of Timoshenko beams using Eringen’s two-phase nonlocal model. Math Mech Solids 24:1081286517750008

    MathSciNet  Google Scholar 

  41. Zhu X, Li L (2017a) Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity. Int J Mech Sci 133:639–650

    Google Scholar 

  42. Fernández-Sáez J, Zaera R (2017) Vibrations of Bernoulli-Euler beams using the two-phase nonlocal elasticity theory. Int J Eng Sci 119:232–248

    MathSciNet  MATH  Google Scholar 

  43. Fakher M, Hosseini-Hashemi S (2020) Vibration of two-phase local/nonlocal Timoshenko nanobeams with an efficient shear-locking-free finite-element model and exact solution. Eng Comput. https://doi.org/10.1007/s00366-020-01058-z

    Article  Google Scholar 

  44. Khaniki HB (2018) On vibrations of nanobeam systems. Int J Eng Sci 124:85–103

    MathSciNet  MATH  Google Scholar 

  45. Fakher M, Behdad S, Naderi A, Hosseini-Hashemi S (2020) Thermal vibration and buckling analysis of two-phase nanobeams embedded in size dependent elastic medium. Int J Mech Sci 171:105381

    Google Scholar 

  46. Fakher M, Hosseini-Hashemi S (2020) Nonlinear vibration analysis of two-phase local/nonlocal nanobeams with size-dependent nonlinearity by using Galerkin method. J Vib Control 11:1077546320927619

    Google Scholar 

  47. Hosseini-Hashemi S, Behdad S, Fakher M (2020) Vibration analysis of two-phase local/nonlocal viscoelastic nanobeams with surface effects. Eur Phys J Plus 135(2):190

    Google Scholar 

  48. Naderi A, Behdad S, Fakher M, Hosseini-Hashemi S (2020) Vibration analysis of mass nanosensors with considering the axial-flexural coupling based on the two-phase local/nonlocal elasticity. Mech Syst Sig Process 145:106931

    Google Scholar 

  49. Lim C, Zhang G, Reddy J (2015) A higher order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids 78:298–313

    MathSciNet  MATH  Google Scholar 

  50. Farajpour A, Farokhi H, Ghayesh MH (2019) Chaotic motion analysis of fluid-conveying viscoelastic nanotubes. Eur J Mech A/Solids 74:281–296

    MathSciNet  MATH  Google Scholar 

  51. Karami B, Janghorban M (2019) Characteristics of elastic waves in radial direction of anisotropic solid sphere, a new closed-form solution. Eur J Mech A/Solids 76:36–45

    MathSciNet  MATH  Google Scholar 

  52. Xiao W-s, Dai P (2020) Static analysis of a circular nanotube made of functionally graded bi-semi-tubes using nonlocal strain gradient theory and a refined shear model. Eur J Mech A/Solids 6:103979

    MathSciNet  MATH  Google Scholar 

  53. Ebrahimi F, Barati MR, Dabbagh A (2016) A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates. Int J Eng Sci 107:169–182

    Google Scholar 

  54. Ebrahimi F, Dabbagh A (2017) On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory. Compos Struct 162:281–293

    Google Scholar 

  55. Zeighampour H, Beni YT, Dehkordi MB (2018) Wave propagation in viscoelastic thin cylindrical nanoshell resting on a visco-Pasternak foundation based on nonlocal strain gradient theory. Thin-Walled Struct 122:378–386

    Google Scholar 

  56. Li L, Hu Y, Li X (2016) Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory. Int J Mech Sci 115:135–144

    Google Scholar 

  57. Li X, Li L, Hu Y, Ding Z, Deng W (2017) Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory. Compos Struct 165:250–265

    Google Scholar 

  58. Rajabi K, Hosseini-Hashemi S (2017) Size-dependent free vibration analysis of first-order shear-deformable orthotropic nanoplates via the nonlocal strain gradient theory. Mater Res Exp 4(7):075054

    Google Scholar 

  59. Fakher M, Hosseini-Hashemi S (2017) Bending and free vibration analysis of nanobeams by differential and integral forms of nonlocal strain gradient with Rayleigh-Ritz method. Mater Res Exp 4(12):125025

    Google Scholar 

  60. Barretta R, de Sciarra FM (2019) Variational nonlocal gradient elasticity for nano-beams. Int J Eng Sci 143:73–91

    MathSciNet  MATH  Google Scholar 

  61. Zaera R, Serrano Ó, Fernández-Sáez J (2019) On the consistency of the nonlocal strain gradient elasticity. Int J Eng Sci 138:65–81

    MathSciNet  MATH  Google Scholar 

  62. Zaera R, Serrano Ó, Fernández-Sáez J (2020) Non-standard and constitutive boundary conditions in nonlocal strain gradient elasticity. Meccanica 55(3):469–479

    MathSciNet  MATH  Google Scholar 

  63. Zhu X, Li L (2017b) Closed form solution for a nonlocal strain gradient rod in tension. Int J Eng Sci 119:16–28

    MathSciNet  MATH  Google Scholar 

  64. Zhu X, Li L (2017c) On longitudinal dynamics of nanorods. Int J Eng Sci 120:129–145

    Google Scholar 

  65. Polyanin AD, Manzhirov AV (2008) Handbook of integral equations. CRC Press, Boca Raton

    MATH  Google Scholar 

  66. Thota S (2019) A new root-finding algorithm using exponential series. Ural Math J 5(1):83–90

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Fakher.

Appendix-A

Appendix-A

Non dimensional form of CBCs related to the TBT:

$$\begin{gathered} \frac{1}{{\Gamma_{1}^{2} \Gamma_{2} }}(( - 1 + \zeta_{1} )\Gamma_{2} \Gamma_{4}^{2} \partial_{x} \Phi - ( - 1 + \zeta_{1} )\Gamma_{1} \Gamma_{2} \Gamma_{4}^{2} \partial_{x,x} \Phi - \hfill \\ ( - 1 + \zeta_{1} )\Gamma_{1}^{2} \Gamma_{2} (\partial_{x} \Phi - \Gamma_{4}^{2} \partial_{x,x,x} \Phi ) + ( - 1 + \zeta_{1} )\Gamma_{1}^{3} \Gamma_{2} (\partial_{x,x} \Phi - \Gamma_{4}^{2} \partial_{x,x,x,x} \Phi ) - \hfill \\ \Gamma_{1}^{4} (\lambda^{2} \partial_{x} \Phi + \Gamma_{2} (\lambda^{2} \overline{W}_{T} + \zeta_{1} \partial_{x,x,x} \Phi - \zeta_{1} \Gamma_{4}^{2} \partial_{x,x,x,x,x} \Phi )) + \hfill \\ \Gamma_{1}^{5} (\lambda^{2} \partial_{x,x} \Phi + \Gamma_{2} (\lambda^{2} \partial_{x} \overline{W}_{T} + \zeta_{1} \partial_{x,x,x,x} \Phi - \zeta_{1} \Gamma_{4}^{2} \partial_{x,x,x,x,x,x} \Phi )) + \hfill \\ (\Gamma_{2} \Gamma_{4}^{2} - \zeta_{1} \Gamma_{2} \Gamma_{4}^{2} )\partial_{x} \Phi ) = 0\,\,\,at\,\overline{x} = 0 \hfill \\ \end{gathered}$$
(64)
$$\begin{gathered} \frac{1}{{\Gamma_{1}^{2} \Gamma_{2} }}( - ( - 1 + \zeta_{1} )\Gamma_{2} \Gamma_{4}^{2} \partial_{x} \Phi - ( - 1 + \zeta_{1} )\Gamma_{1} \Gamma_{2} \Gamma_{4}^{2} \partial_{x,x} \Phi + \hfill \\ ( - 1 + \zeta_{1} )\Gamma_{1}^{2} \Gamma_{2} (\partial_{x} \Phi - \Gamma_{4}^{2} \partial_{x,x,x} \Phi ) + ( - 1 + \zeta_{1} )\Gamma_{1}^{3} \Gamma_{2} (\partial_{x,x} \Phi - \Gamma_{4}^{2} \partial_{x,x,x,x} \Phi ) + \hfill \\ \Gamma_{1}^{4} (\lambda^{2} \partial_{x} \Phi + \Gamma_{2} (\lambda^{2} \overline{W}_{T} + \zeta_{1} \partial_{x,x,x} \Phi - \zeta_{1} \Gamma_{4}^{2} \partial_{x,x,x,x,x} \Phi )) + \hfill \\ \Gamma_{1}^{5} (\lambda^{2} \partial_{x,x} \Phi + \Gamma_{2} (\lambda^{2} \partial_{x} \overline{W}_{T} + \zeta_{1} \partial_{x,x,x,x} \Phi - \zeta_{1} \Gamma_{4}^{2} \partial_{x,x,x,x,x,x} \Phi )) + \hfill \\ ( - \Gamma_{2} \Gamma_{4}^{2} + \zeta_{1} \Gamma_{2} \Gamma_{4}^{2} )\partial_{x} \Phi ) = 0\,\,at\,\overline{x} = 1 \hfill \\ \end{gathered}$$
(65)
$$\begin{gathered} \frac{1}{{\Gamma_{1}^{3} }}(( - 1 + \zeta_{1} )\Gamma_{4}^{2} (\Phi + \partial_{x} \overline{W}_{T} ) - ( - 1 + \zeta_{1} )\Gamma_{1} \Gamma_{4}^{2} (\partial_{x} \Phi + \partial_{x,x} \overline{W}_{T} ) - \hfill \\ ( - 1 + \zeta_{1} )\Gamma_{1}^{2} (\Phi + \partial_{x} \overline{W}_{T} - \Gamma_{4}^{2} (\partial_{x,x} \Phi + \partial_{x,x,x} \overline{W}_{T} )) + \hfill \\ ( - 1 + \zeta_{1} )\Gamma_{1}^{3} (\partial_{x} \Phi + \partial_{x,x} \overline{W}_{T} - \Gamma_{4}^{2} (\partial_{x,x,x} \Phi + \partial_{x,x,x,x} \overline{W}_{T} )) - \hfill \\ \Gamma_{1}^{4} (\lambda^{2} \Gamma_{3} \partial_{x} \overline{W}_{T} + \zeta_{1} (\partial_{x,x} \Phi + \partial_{x,x,x} \overline{W}_{T} - \Gamma_{4}^{2} (\partial_{x,x,x,x} \Phi + \partial_{x,x,x,x,x} \overline{W}_{T} ))) + \hfill \\ \Gamma_{1}^{5} (\lambda^{2} \Gamma_{3} \partial_{x,x} \overline{W}_{T} + \zeta_{1} (\partial_{x,x,x} \Phi + \partial_{x,x,x,x} \overline{W}_{T} - \Gamma_{4}^{2} (\partial_{x,x,x,x,x} \Phi + \partial_{x,x,x,x,x,x} \overline{W}_{T} ))) + \hfill \\ (\Gamma_{4}^{2} - \zeta_{1} \Gamma_{4}^{2} )(\Phi + \partial_{x} \overline{W}_{T} ))\, = 0\,\,\,at\,\overline{x} = 0 \hfill \\ \end{gathered}$$
(66)
$$\begin{gathered} \frac{1}{{\Gamma_{1}^{3} }}( - ( - 1 + \zeta_{1} )\Gamma_{4}^{2} (\Phi + \partial_{x} \overline{W}_{T} ) - ( - 1 + \zeta_{1} )\Gamma_{1} \Gamma_{4}^{2} (\partial_{x} \Phi + \partial_{x,x} \overline{W}_{T} ) + \hfill \\ ( - 1 + \zeta_{1} )\Gamma_{1}^{2} (\Phi + \partial_{x} \overline{W}_{T} - \Gamma_{4}^{2} (\partial_{x,x} \Phi + \partial_{x,x,x} \overline{W}_{T} )) + \hfill \\ ( - 1 + \zeta_{1} )\Gamma_{1}^{3} (\partial_{x} \Phi + \partial_{x,x} \overline{W}_{T} - \Gamma_{4}^{2} (\partial_{x,x,x} \Phi + \partial_{x,x,x,x} \overline{W}_{T} )) + \hfill \\ \Gamma_{1}^{4} (\lambda^{2} \Gamma_{3} \partial_{x} \overline{W}_{T} + \zeta_{1} (\partial_{x,x} \Phi + \partial_{x,x,x} \overline{W}_{T} - \Gamma_{4}^{2} (\partial_{x,x,x,x} \Phi + \partial_{x,x,x,x,x} \overline{W}_{T} ))) + \hfill \\ \Gamma_{1}^{5} (\lambda^{2} \Gamma_{3} \partial_{x,x} \overline{W}_{T} + \zeta_{1} (\partial_{x,x,x} \Phi + \partial_{x,x,x,x} \overline{W}_{T} - \Gamma_{4}^{2} (\partial_{x,x,x,x,x} \Phi + \partial_{x,x,x,x,x,x} \overline{W}_{T} ))) + \hfill \\ ( - \Gamma_{4}^{2} + \zeta_{1} \Gamma_{4}^{2} )(\Phi + \partial_{x} \overline{W}_{T} )) = 0\,\,\,at\,\overline{x} = 1. \hfill \\ \end{gathered}$$
(67)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakher, M., Hosseini-Hashemi, S. On the vibration of nanobeams with consistent two-phase nonlocal strain gradient theory: exact solution and integral nonlocal finite-element model. Engineering with Computers 38, 2361–2384 (2022). https://doi.org/10.1007/s00366-020-01206-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01206-5

Keywords

Navigation