Skip to main content
Log in

A third order shear deformable model and its applications for nonlinear dynamic response of graphene oxides reinforced curved beams resting on visco-elastic foundation and subjected to moving loads

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In present work, a nonlinear functionally graded curved beam model including the von Kármán geometric nonlinearity is developed on the basis of the third-order shear deformation theory. Due to incorporating the trapezoidal shape factor in the proposed model, the errors caused by geometric curvatures are eliminated. The governing equations of motions related to the dynamics of curved beams are derived by Lagrange method and solved using a standard Newmark time iteration procedure in conjunction with Newton–Raphson technique. Some comparisons are performed and indicate that the results from our model coincide favorably with semi-analytical solutions. Afterwards, utilizing the proposed model, the present investigation focuses on the nonlinear transient response of functionally graded multilayer curved beams reinforced by graphene oxide nano-fillers subjected to moving loads. A modified Halpin–Tsai micromechanical model is implemented to determine the effective modulus of graphene oxide/polymer nanocomposite, and the rule of mixture is used to calculate the mass density and Poisson’s ratio. The curved beams are assumed to rest on a visco-Pasternak foundation. The effects GO nano-fillers, including their weight fractions, distribution patterns and size on the nonlinear dynamic responses of the nanocomposite curved beams subjected to moving loads are studied. Moreover, the effects of radius-to-span ratios and visco-Pasternak foundation on the nonlinear dynamic response of curved beams are also discussed as subtopics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Javani M, Kiani Y, Eslami MR (2019) Geometrically nonlinear rapid surface heating of temperature-dependent FGM arches. Aerosp Sci Technol 90:264–274

    MATH  Google Scholar 

  2. Eroglu U (2016) Large deflection analysis of planar curved beams made of functionally graded materials using variational iterational method. Compos Struct 136:204–216

    Google Scholar 

  3. Chen HL, Xia ZC, Zhou JN, Fan HL, Jin FN (2013) Dynamic responses of underground arch structures subjected to conventional blast loads: curvature effects. Arch Civ Mech Eng 13(3):322–333

    Google Scholar 

  4. Zhang W, Wu RQ, Behdinan K (2019) Nonlinear dynamic analysis near resonance of a beam-ring structure for modeling circular truss antenna under time-dependent thermal excitation. Aerosp Sci Technol 86:296–311

    Google Scholar 

  5. Kiss LP (2020) Nonlinear stability analysis of FGM shallow arches under an arbitrary concentrated radial force. Int J Mech Mater Des 16:91–108

    Google Scholar 

  6. Kurtaran H (2015) Large displacement static and transient analysis of functionally graded deep curved beams with generalized differential quadrature method. Compos Struct 131:821–831

    Google Scholar 

  7. Anirudh B, Ganapathi M, Anant C, Polit O (2019) A comprehensive analysis of porous graphene-reinforced curved beams by finite element approach using higher-order structural theory: bending, vibration and buckling. Compos Struct 222:110899

    Google Scholar 

  8. Liu Z, Yang C, Gao W, Wu D, Li G (2019) Nonlinear behaviour and stability of functionally graded porous arches with graphene platelets reinforcements. Int J Eng Sci 137:37–56

    MathSciNet  MATH  Google Scholar 

  9. Yildirim V (1999) Rotary inertia, axial and shear deformation effects on the in-plane natural frequencies of symmetric cross-ply laminated circular arches. J Sound Vib 224:575–589

    Google Scholar 

  10. Malekzadeh P, Atashi MM, Karami G (2009) In-plane free vibration of functionally graded circular arches with temperature-dependent properties under thermal environment. J Sound Vib 326:837–851

    Google Scholar 

  11. Malekzadeh P, Golbahar Haghighi MR, Atashi MM (2010) Out-of-plane free vibration of functionally graded circular curved beams in thermal environment. Compos Struct 92:541–552

    Google Scholar 

  12. Keibolahi A, Kiani Y, Eslami MR (2018) Dynamic snap-through of shallow arches under thermal shock. Aerosp Sci Technol 77:545–554

    Google Scholar 

  13. Nanda N, Kapuria S (2015) Spectral finite element for wave propagation analysis of laminated composite curved beams using classical and first order shear deformation theories. Compos Struct 132:310–320

    Google Scholar 

  14. She G-L, Ren Y-R, Yan K-M (2019) On snap-buckling of porous FG curved nanobeams. Acta Astronaut 161:475–484

    Google Scholar 

  15. Polit O, Anant C, Anirudh B (2019) Functionally graded graphene reinforced porous nanocomposite curved beams: bending and elastic stability using a higher-order model with thickness stretch effect. Compos B Eng 166:310–327

    Google Scholar 

  16. Ganapathi M, Anirudh B, Anant C, Polit O (2019) Dynamic characteristics of functionally graded graphene reinforced porous nanocomposite curved beams based on trigonometric shear deformation theory with thickness stretch effect. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2019.1601310

    Article  Google Scholar 

  17. Sayyad AS, Ghugal YM (2019) A sinusoidal beam theory for functionally graded sandwich curved beams. Compos Struct 226:111246

    Google Scholar 

  18. Ebrahimi F, Barati MR (2017) A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams. Compos Struct 159:174–182

    Google Scholar 

  19. Ebrahimi F, Barati MR (2016) Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory. Appl Phys A 122:843

    Google Scholar 

  20. Qatu MS (1999) Accurate equations for laminated composite deep thick shells. Int J Solids Struct 36:2917–2941

    MATH  Google Scholar 

  21. Bert CW (1967) Structural theory of laminated anisotropic elastic shells. J Compos Mater 1:414–423

    Google Scholar 

  22. Khalili SMR, Malekzadeh DAK, F, (2012) Free vibration analysis of homogeneous isotropic circular cylindrical shells based on a new three-dimensional refined higher-order theory. Int J Mech Sci 56:1–25

    Google Scholar 

  23. Wang Y, Wu D (2017) Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory. Aerosp Sci Technol 66:83–91

    Google Scholar 

  24. Mortazavi M, Heo Y (2018) Nonlinear dynamic response of steel materials and plain plate systems to impact loads: review and validation. Eng Struct 173:758–767

    Google Scholar 

  25. Rafiee M, Nitzsche F, Labrosse M (2017) Dynamics, vibration and control of rotating composite beams and blades: a critical review. Thin-Walled Struct 119:795–819

    Google Scholar 

  26. Ebrahimi F, Nouraei M, Dabbagh A (2020) Thermal vibration analysis of embedded graphene oxide powder-reinforced nanocomposite plates. Eng Comput 36:879–895

    Google Scholar 

  27. Wang L, Yang J, Li YH (2020) Nonlinear vibration of a deploying laminated Rayleigh beam with a spinning motion in hygrothermal environment. Eng Comput. https://doi.org/10.1007/s00366-020-01035-6

    Article  Google Scholar 

  28. Wang Y, Xie K, Fu T (2018) Vibration analysis of functionally graded porous shear deformable tubes excited by moving distributed loads. Acta Astronaut 151:603–613

    Google Scholar 

  29. Wang YQ, Ye C, Zu JW (2019) Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets. Aerosp Sci Technol 85:359–370

    Google Scholar 

  30. Zhang W, Liu T, Xi A, Wang YN (2018) Resonant responses and chaotic dynamics of composite laminated circular cylindrical shell with membranes. J Sound Vib 423:65–99

    Google Scholar 

  31. Yang J, Chen Y, Xiang Y, Jia XL (2008) Free and forced vibration of cracked inhomogeneous beams under an axial force and a moving load. J Sound Vib 312:166–181

    Google Scholar 

  32. Wang Y, Wu D (2016) Thermal effect on the dynamic response of axially functionally graded beam subjected to a moving harmonic load. Acta Astronaut 127:171–181

    Google Scholar 

  33. Şimşek M (2010) Vibration analysis of a functionally graded beam under a moving mass by using different beam theories. Compos Struct 92:904–917

    Google Scholar 

  34. Akbaş ŞD, Fageehi YA, Assie AE (2020) Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load. Eng Comput. https://doi.org/10.1007/s00366-020-01070-3

    Article  Google Scholar 

  35. Wu H, Liu H (2020) Nonlinear thermo-mechanical response of temperature-dependent FG sandwich nanobeams with geometric imperfection. Eng Comput. https://doi.org/10.1007/s00366-020-01005-y

    Article  Google Scholar 

  36. Norouzi H, Younesian D (2015) Chaotic vibrations of beams on nonlinear elastic foundations subjected to reciprocating loads. Mech Res Commun 69:121–128

    Google Scholar 

  37. Wang Y, Zhou A, Fu T, Zhang W (2020) Transient response of a sandwich beam with functionally graded porous core traversed by a non-uniformly distributed moving mass. Int J Mech Mater Des 16:519–540

    Google Scholar 

  38. Roy PA, Meguid SA (2018) Nonlinear transient dynamic response of a blade subject to a pulsating load in a decaying centrifugal force field. Int J Mech Mater Des 14:709–728

    Google Scholar 

  39. Noor AK, Knight NF Jr (1980) Nonlinear dynamic analysis of curved beams. Comput Methods Appl Mech Eng 23:225–251

    MATH  Google Scholar 

  40. Khdeir AA, Reddy JN (1997) Free and forced vibration of cross-ply laminated composite shallow arches. Int J Solids Struct 34:1217–1234

    MATH  Google Scholar 

  41. Huang JL, Su RKL, Lee YY, Chen SH (2011) Nonlinear vibration of a curved beam under uniform base harmonic excitation with quadratic and cubic nonlinearities. J Sound Vib 330:5151–5164

    Google Scholar 

  42. Sarparast H, Ebrahimi-Mamaghani A (2019) Vibrations of laminated deep curved beams under moving loads. Compos Struct 226:111262

    Google Scholar 

  43. Zhao S, Yang Z, Kitipornchai S, Yang J (2020) Dynamic instability of functionally graded porous arches reinforced by graphene platelets. Thin-Walled Struct 147:106491

    Google Scholar 

  44. Aditya Narayan D, Ben Zineb T, Polit O, Pradyumna B, Ganapathi M (2019) Large amplitude free flexural vibrations of functionally graded graphene platelets reinforced porous composite curved beams using finite element based on trigonometric shear deformation theory. Int J Non-Linear Mech 116:302–317

    Google Scholar 

  45. Yang Z, Yang J, Liu A, Fu J (2018) Nonlinear in-plane instability of functionally graded multilayer graphene reinforced composite shallow arches. Compos Struct 204:301–312

    Google Scholar 

  46. Arefi M, Bidgoli EM-R, Dimitri R, Tornabene F (2019) Size-dependent free vibrations of FG polymer composite curved nanobeams reinforced with graphene nanoplatelets resting on Pasternak foundations. Appl Sci 9:1580

    Google Scholar 

  47. Dong YH, Li YH, Chen D, Yang J (2018) Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion. Compos Part B Eng 145:1–13

    Google Scholar 

  48. Dong YH, Zhu B, Wang Y, Li YH, Yang J (2018) Nonlinear free vibration of graded graphene reinforced cylindrical shells: effects of spinning motion and axial load. J Sound Vib 437:79–96

    Google Scholar 

  49. Dong YH, Li YH, Li XY, Yang J (2020) Active control of dynamic behaviors of graded graphene reinforced cylindrical shells with piezoelectric actuator/sensor layers. Appl Math Model 82:252–270

    MathSciNet  MATH  Google Scholar 

  50. Available from: https://www.graphene-info.com/graphene-oxide. Accessed 30 Nov 2020

  51. Mahkam M, Rafi AA, Faraji L, Zakerzadeh E (2015) Preparation of poly (methacrylic acid)–graphene oxide nanocomposite as a pH-sensitive drug carrier through in-situ copolymerization of methacrylic acid with polymerizable graphene. Polym Plast Technol Eng 54(9):916–922

    Google Scholar 

  52. Zhang Z, Li Y, Wu H, Zhang H, Wu H, Jiang S, Chai G (2020) Mechanical analysis of functionally graded graphene oxide-reinforced composite beams based on the first-order shear deformation theory. Mech Adv Mater Struct 27:3–11

    Google Scholar 

  53. Es MV (2001) Polymer clay nanocomposites, the importance of particle dimensions. Polymer 48:901–909

    Google Scholar 

  54. Harris B (1986) Engineering composite materials. Institute of Metals, London

    Google Scholar 

  55. Wang Y, Zhou A, Xie K, Fu T, Shi C (2020) Nonlinear static behaviors of functionally graded polymer-based circular microarches reinforced by graphene oxide nanofillers. Results Phys 16:102894

    Google Scholar 

  56. Bhimaraddi A (1984) A higher order theory for free vibration analysis of circular cylindrical shells. Int J Solids Struct 20:623–630

    MATH  Google Scholar 

  57. Calim FF (2016) Free and forced vibration analysis of axially functionally graded Timoshenko beams on two-parameter viscoelastic foundation. Compos B 103:98–112

    Google Scholar 

  58. Babaei H, Kiani Y, Eslami MR (2019) Large amplitude free vibration analysis of shear deformable FGM shallow arches on nonlinear elastic foundation. Thin-Walled Struct 144:106237

    Google Scholar 

  59. Qatu MS (1993) Theories and analyses of thin and moderately thick laminated composite curved beams. Int J Solids Struct 30:2743–2756

    MATH  Google Scholar 

  60. Shi Z, Yao X, Pang F, Wang Q (2017) A semi-analytical solution for in-plane free vibration analysis of functionally graded carbon nanotube reinforced composite circular arches with elastic restraints. Compos Struct 182:420–434

    Google Scholar 

  61. Ying J, Lü CF, Chen WQ (2008) Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations. Compos Struct 84(3):209–219

    Google Scholar 

  62. Xie K, Wang Y, Fu T (2019) Dynamic response of axially functionally graded beam with longitudinal–transverse coupling effect. Aerosp Sci Technol 85:85–95

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of National Natural Science Foundation of China (NNSFC) through Grant nos. 11832002 and 11427801, the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (PHRIHLB).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuewu Wang or Wei Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Appendix

Appendix

The details of the matrix in governing equations Eq. (28) are given in the following:

$$\left[ {\mathbf{K}} \right]_{{\text{L}}} = \left[ {\begin{array}{*{20}c} {K_{{\text{L}}}^{11} } & {K_{{\text{L}}}^{12} } & {K_{{\text{L}}}^{13} } \\ {\left( {K_{{\text{L}}}^{12} } \right)^{{\text{T}}} } & {K_{{\text{L}}}^{22} } & {K_{{\text{L}}}^{23} } \\ {\left( {K_{{\text{L}}}^{13} } \right)^{{\text{T}}} } & {\left( {K_{{\text{L}}}^{23} } \right)^{{\text{T}}} } & {K_{{\text{L}}}^{33} } \\ \end{array} } \right]$$
(31)

in which

$$K_{{\text{L}}}^{11} = \int\limits_{0}^{\vartheta } {\left( {L_{10} \frac{{\partial {{\varvec{\upalpha}}}}}{\partial \theta }\frac{{\partial {{\varvec{\upalpha}}}^{{\text{T}}} }}{\partial \theta }} \right){\text{d}}\theta } ;\quad K_{{\text{L}}}^{12} = \int\limits_{0}^{\vartheta } {\left( {L_{14} \frac{{\partial {{\varvec{\upalpha}}}}}{\partial \theta }\frac{{\partial {{\varvec{\upbeta}}}^{{\text{T}}} }}{\partial \theta }} \right){\text{d}}\theta } ;\quad K_{{\text{L}}}^{13} = \int\limits_{0}^{\vartheta } {\left( {L_{15} \frac{{\partial {{\varvec{\upalpha}}}}}{\partial \theta }\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial^{2} \theta }} + L_{16} \frac{{\partial {{\varvec{\upalpha}}}}}{\partial \theta }{{\varvec{\upxi}}}^{{\text{T}}} } \right){\text{d}}\theta } ;$$
$$K_{{\text{L}}}^{22} = \int\limits_{0}^{\vartheta } {\left( {L_{11} \frac{{\partial {{\varvec{\upbeta}}}}}{\partial \theta }\frac{{\partial {{\varvec{\upbeta}}}^{{\text{T}}} }}{\partial \theta } + L_{55} {\mathbf{\beta \beta }}^{{\text{T}}} } \right){\text{d}}\theta } ;\quad K_{{\text{L}}}^{23} = \int\limits_{0}^{\vartheta } {\left( {L_{17} \frac{{\partial {{\varvec{\upbeta}}}}}{\partial \theta }\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial^{2} \theta }} + L_{18} \frac{{\partial {{\varvec{\upbeta}}}}}{\partial \theta }{{\varvec{\upxi}}}^{{\text{T}}} } \right){\text{d}}\theta } ;\quad$$
$$K_{{\text{L}}}^{33} = \int\limits_{0}^{\vartheta } {\left( {L_{12} \frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial^{2} \theta }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial^{2} \theta }} + 2L_{19} \frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial^{2} \theta }}{{\varvec{\upxi}}}^{{\text{T}}} + L_{13} {\mathbf{\xi \xi }}^{{\text{T}}} } \right){\text{d}}\theta }$$
$$\left[ {\mathbf{K}} \right]_{{{\text{NL}}}} = \frac{1}{2}\left[ {\begin{array}{*{20}c} {0_{m \times m} } & {0_{m \times m} } & {K_{{{\text{NL}}}}^{13} } \\ {0_{m \times m} } & {0_{m \times m} } & {K_{{{\text{NL}}}}^{23} } \\ {\left( {K_{{{\text{NL}}}}^{13} } \right)^{{\text{T}}} } & {\left( {K_{{{\text{NL}}}}^{23} } \right)^{{\text{T}}} } & {K_{{{\text{NL}}}}^{33} } \\ \end{array} } \right]$$
(32)

in which

$$K_{{{\text{NL}}}}^{13} = \int\limits_{0}^{\vartheta } {\left[ {N_{11} \left( {\frac{\partial w}{{\partial \theta }}} \right)\left( {\frac{{\partial {{\varvec{\upalpha}}}}}{\partial \theta }\frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial \theta }} \right)} \right]{\text{d}}\theta } ;\quad K_{{{\text{NL}}}}^{23} = \int\limits_{0}^{\vartheta } {\left[ {N_{12} \left( {\frac{\partial w}{{\partial \theta }}} \right)\left( {\frac{{\partial {{\varvec{\upbeta}}}}}{\partial \theta }\frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial \theta }} \right)} \right]{\text{d}}\theta } ;$$
$$K_{{{\text{NL}}}}^{33} = \int\limits_{0}^{\vartheta } {\left[ {\left( {N_{11} \frac{{\partial v_{0} }}{\partial \theta } + N_{12} \frac{{\partial v_{1} }}{\partial \theta } - 2N_{13} \frac{{\partial^{2} w}}{{\partial \theta^{2} }} + 2N_{14} w + N_{15} \left( {\frac{\partial w}{{\partial \theta }}} \right)^{2} } \right)\frac{{\partial {{\varvec{\upxi}}}}}{\partial \theta }\frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial \theta } - N_{13} \frac{\partial w}{{\partial \theta }}\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial \theta^{2} }}\frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial \theta } + N_{14} \frac{\partial w}{{\partial \theta }}{{\varvec{\upxi}}}\frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial \theta }} \right]{\text{d}}\theta }$$
$$\left[ {\mathbf{M}} \right] = \left[ {\begin{array}{*{20}c} {M_{{}}^{11} } & {M_{{}}^{12} } & {M_{{}}^{13} } \\ {\left( {M_{{}}^{12} } \right)^{{\text{T}}} } & {M_{{}}^{22} } & {M_{{}}^{23} } \\ {\left( {M_{{}}^{13} } \right)^{{\text{T}}} } & {\left( {M_{{}}^{23} } \right)^{{\text{T}}} } & {M_{{}}^{33} } \\ \end{array} } \right]$$
(33)

in which

$$M_{{}}^{11} = \int\limits_{0}^{\vartheta } {\left( {I_{0} {\mathbf{\alpha \alpha }}^{{\text{T}}} } \right){\text{d}}\theta } ;\quad M_{{}}^{12} = \int\limits_{0}^{\vartheta } {\left( {I_{f} {\mathbf{\alpha \beta }}^{{\text{T}}} } \right){\text{d}}\theta } ;\quad M_{{}}^{13} = -\int\limits_{0}^{\vartheta } {\left( {I_{1} {{\varvec{\upalpha}}}\frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial \theta }} \right){\text{d}}\theta } ;$$
$$M_{{}}^{22} = \int\limits_{0}^{\vartheta } {\left( {I_{ff} {\mathbf{\beta \beta }}^{{\text{T}}} } \right){\text{d}}\theta } ;\quad M_{{}}^{23} = - \int\limits_{0}^{\vartheta } {\left( {I_{zf} {{\varvec{\upbeta}}}\frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial \theta }} \right){\text{d}}\theta } ;$$
$$M_{{}}^{33} = \int\limits_{0}^{\vartheta } {\left( {I_{2} \frac{{\partial {{\varvec{\upxi}}}}}{\partial \theta }\frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial \theta } + I_{{\text{R}}} {\mathbf{\xi \xi }}^{{\text{T}}} } \right){\text{d}}\theta }$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xie, K., Fu, T. et al. A third order shear deformable model and its applications for nonlinear dynamic response of graphene oxides reinforced curved beams resting on visco-elastic foundation and subjected to moving loads. Engineering with Computers 38, 2805–2819 (2022). https://doi.org/10.1007/s00366-020-01238-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01238-x

Keywords

Navigation