Skip to main content
Log in

Three novel truly-explicit time-marching procedures considering adaptive dissipation control

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, three novel truly-explicit time-marching techniques are proposed for the solution of hyperbolic models. In these techniques, locally computed time-integration parameters are applied, which are defined taking into account the properties of the spatially/temporally discretised model and the evolution of the computed responses. These adaptive time integrators allow introducing enhanced numerical damping into the analysis, reducing spurious non-physical oscillations that occur due to the excitation of spatially unresolved modes. The proposed adaptive techniques are formulated based on second-, third-, and fourth-order accurate time-marching approaches, providing solution algorithms with different complexities. At the end of the paper, numerical results are presented, illustrating the good performance of the proposed procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Runge C (1895) Über die numerische Auflösung von Differentialgleichungen. Math Ann 46:167–178

    Article  MathSciNet  Google Scholar 

  2. Kutta W (1901) Beitrag Zur Näherungsweisen Integration Totaler Differentialgleichungen. Zeitschrift für mathematisch Physik 46:435–453

    MATH  Google Scholar 

  3. Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div ASCE 85:67–94

    Article  Google Scholar 

  4. Hilber HM, Hughes TJR, Taylor RL (1977) Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq Eng Struct Dyn 5:283–292

    Article  Google Scholar 

  5. Wood WL, Bossak M, Zienkiewicz OC (1980) An alpha modification of Newmark’s method. Int J Numer Meth Eng 15:1562–1566

    Article  MathSciNet  Google Scholar 

  6. Chung J, Hulbert JM (1993) A time integration method for structural dynamics with improved numerical dissipation: the generalized α method. J Appl Mech 30:371–375

    Article  Google Scholar 

  7. Hulbert GM, Chung J (1996) Explicit time integration algorithms for structural dynamics with optimal numerical dissipation. Comput Methods Appl Mech Eng 137:175–188

    Article  MathSciNet  Google Scholar 

  8. Fung TC (1999) Weighting parameters for unconditionally stable higher-order accurate time step integration algorithms. Part 2: second-order equations. Int J Numer Methods Eng 45:971–1006

    Article  Google Scholar 

  9. Fung TC (2001) Solving initial value problems by differential quadrature method—part 2: second-and higher-order equations. Int J Numer Meth Eng 50:1429–1454

    Article  Google Scholar 

  10. Mancuso M, Ubertini F (2001) Collocation methods with controllable dissipation for linear dynamics. Comput Methods Appl Mech Eng 190:3607–3621

    Article  MathSciNet  Google Scholar 

  11. Fung TC (2002) Higher-order accurate time-step-integration algorithms by post-integration techniques. Int J Numer Meth Eng 53:1175–1193

    Article  MathSciNet  Google Scholar 

  12. Bathe KJ, Baig MMI (2005) On a composite implicit time integration procedure for nonlinear dynamics. Comput Struct 83:2513–2534

    Article  MathSciNet  Google Scholar 

  13. Leontyev VA (2010) Direct time integration algorithm with controllable numerical dissipation for structural dynamics: two-step Lambda method. Appl Numer Math 60:277–292

    Article  MathSciNet  Google Scholar 

  14. Soares D (2011) A new family of time marching procedures based on Green’s function matrices. Comput Struct 89:266–276

    Article  Google Scholar 

  15. Noh G, Bathe KJ (2013) An explicit time integration scheme for the analysis of wave propagations. Comput Struct 129:178–193

    Article  Google Scholar 

  16. Loureiro FS, Silva JEA, Mansur WJ (2015) An explicit time-stepping technique for elastic waves under concepts of Green’s functions computed locally by the FEM. Eng Anal Bound Elem 50:381–394

    Article  MathSciNet  Google Scholar 

  17. Soares D (2015) A simple and effective new family of time marching procedures for dynamics. Comput Methods Appl Mech Eng 283:1138–1166

    Article  MathSciNet  Google Scholar 

  18. Soares D (2016) A novel family of explicit time marching techniques for structural dynamics and wave propagation. Comput Methods Appl Mech Eng 311:838–855

    Article  MathSciNet  Google Scholar 

  19. Wen WB, Tao Y, Duan SY, Yan J, Wei K, Fang DN (2017) A comparative study of three composite implicit schemes on structural dynamic and wave propagation analysis. Comput Struct 190:126–149

    Article  Google Scholar 

  20. Kim W, Reddy JN (2017) A new family of higher-order time integration algorithms for the analysis of structural dynamics. J Appl Mech 84:071008

    Article  Google Scholar 

  21. Soares D (2018) Nonlinear dynamic analysis considering explicit and implicit time marching techniques with adaptive time integration parameters. Acta Mech 229:2097–2116

    Article  MathSciNet  Google Scholar 

  22. Evans JA, Hiemstra RR, Hughes TJR, Reali A (2018) Explicit higher-order accurate isogeometric collocation methods for structural dynamics. Comput Methods Appl Mech Eng 338:208–240

    Article  MathSciNet  Google Scholar 

  23. Xing Y, Zhang H (2018) An efficient nondissipative higher-order single-step integration method for long-term dynamics simulation. Int J Struct Stab Dyn 18:1850113

    Article  MathSciNet  Google Scholar 

  24. Soares D (2019) A model/solution-adaptive explicit-implicit time-marching technique for wave propagation analysis. Int J Numer Meth Eng 119:590–617

    Article  MathSciNet  Google Scholar 

  25. Soares D (2019) An adaptive semi-explicit/explicit time marching technique for nonlinear dynamics. Comput Methods Appl Mech Eng 354:637–662

    Article  MathSciNet  Google Scholar 

  26. Zhang HM, Xing YF (2019) Two novel explicit time integration methods based on displacement-velocity relations for structural dynamics. Comput Struct 221:127–141

    Article  Google Scholar 

  27. Kim W (2019) An accurate two-stage explicit time integration scheme for structural dynamics and various dynamic problems. Int J Numer Meth Eng 120:1–28

    Article  MathSciNet  Google Scholar 

  28. Kim W (2019) Higher-order explicit time integration methods for numerical analyses of structural dynamics. Latin Am J Solids Struct 16:e201

    Article  Google Scholar 

  29. Li J, Li X, Yu K (2020) Enhanced studies on the composite sub-step algorithm for structural dynamics: the Bathe-like algorithm. Appl Math Model 80:33–64

    Article  MathSciNet  Google Scholar 

  30. Ji Y, Xing Y (2020) Two-sub-step generalized central difference method for general dynamics. Int J Struct Stab Dyn 20:2050071

    Article  MathSciNet  Google Scholar 

  31. Soares D (2020) A novel time-marching formulation for wave propagation analysis: the adaptive hybrid explicit method. Comput Methods Appl Mech Eng 366:113095

    Article  MathSciNet  Google Scholar 

  32. Soares D (2020) Efficient high-order accurate explicit time-marching procedures for dynamic analyses. Eng Comput. https://doi.org/10.1007/s00366-020-01184-8

    Article  Google Scholar 

  33. Soares D (2021) A multi-level explicit time-marching procedure for structural dynamics and wave propagation models. Comput Methods Appl Mech Eng 375:113647

    Article  MathSciNet  Google Scholar 

  34. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications INC., New York

    MATH  Google Scholar 

  35. Fried I (1972) Bounds on the extremal eigenvalues of the finite element stiffness and mass matrices and their spectral condition number. J Sound Vib 22:407–418

    Article  Google Scholar 

Download references

Acknowledgements

The financial support by CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnológico) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delfim Soares Jr..

Appendix

Appendix

The entries of the amplification matrices A2, A3 and A4 may be specified as follows:

$$A2_{11} =1 - \tfrac{1}{2}w^{2} \Delta t^{2} + \tfrac{1}{2}\,\xi {\kern 1pt} w^{3} \Delta t^{3} .$$
(A1a)
$$A2_{12} =\Delta t - \xi w\Delta t^{2} - (\tfrac{1}{4}\alpha - \xi^{2} )w^{2} \Delta t^{3} + \tfrac{1}{4}\alpha \xi w^{3} \Delta t^{4} .$$
(A1b)
$$A2_{21} = - w^{2} \Delta t + \xi {\kern 1pt} w^{3} \Delta t^{2} .$$
(A1c)
$$A2_{22} =1\, - 2\xi {\kern 1pt} w\Delta t - (\tfrac{1}{2}\alpha - 2\xi^{2} ){\kern 1pt} w^{2} \Delta t^{2} + \tfrac{1}{2}\alpha \,\xi {\kern 1pt} w^{3} \Delta t^{3} .$$
(A1d)
$$A3_{11} =1 - \tfrac{1}{2}w^{2} \Delta t^{2} + \tfrac{1}{3}\xi {\kern 1pt} w^{3} \Delta t^{3} + \tfrac{1}{24}{\kern 1pt} w^{4} \Delta t^{4} .$$
(A2a)
$$A3_{12} =\Delta t - \xi {\kern 1pt} w\Delta t^{2} - (\tfrac{1}{12} + \tfrac{1}{12}\alpha - \tfrac{2}{3}\xi^{2} )w^{2} \Delta t^{3} + (\tfrac{1}{12} + \tfrac{1}{18}\alpha )\,\xi {\kern 1pt} w^{3} \Delta t^{4} + \tfrac{1}{144}\alpha w^{4} \Delta t^{5} .$$
(A2b)
$$A3_{21} = - w^{2} \Delta t + \xi {\kern 1pt} w^{3} \Delta t^{2} + (\tfrac{1}{6} - \tfrac{2}{3}\xi^{2} )w^{4} \Delta t^{3} - \tfrac{1}{12}\xi {\kern 1pt} w^{5} \Delta t^{4} .$$
(A2c)
$$\begin{gathered} A3_{22} =1\, - 2\xi {\kern 1pt} w\Delta t - (\tfrac{1}{3} + \tfrac{1}{6}\alpha - 2\xi^{2} ){\kern 1pt} w^{2} \Delta t^{2} + (\tfrac{1}{2} + \tfrac{1}{6}\alpha - \tfrac{4}{3}\xi^{2} )\,\xi {\kern 1pt} w^{3} \Delta t^{3} + \hfill \\ \quad \quad \quad (\tfrac{1}{36}\alpha - (\tfrac{1}{6} + \tfrac{1}{9}\alpha )\xi^{2} )w^{4} \Delta t^{4} - \tfrac{1}{72}\alpha \xi w^{5} \Delta t^{5} . \hfill \\ \end{gathered}$$
(A2d)
$$A4_{11} =1 - \tfrac{1}{2}w^{2} \Delta t^{2} + \tfrac{1}{3}\xi {\kern 1pt} w^{3} \Delta t^{3} + (\tfrac{1}{24} - \tfrac{1}{6}\xi^{2} ){\kern 1pt} w^{4} \Delta t^{4} - \tfrac{23}{{720}}\,\xi {\kern 1pt} w^{5} \Delta t^{5} - \tfrac{1}{720}w^{6} \Delta t^{6} .$$
(A3a)
$$\begin{gathered} A4_{12} =\Delta t - \xi {\kern 1pt} w\Delta t^{2} - (\tfrac{1}{12} + \tfrac{1}{12}\alpha - \tfrac{2}{3}\xi^{2} )w^{2} \Delta t^{3} + (\tfrac{1}{9} + \tfrac{1}{18}\alpha - \tfrac{1}{3}\xi^{2} )\,\xi {\kern 1pt} w^{3} \Delta t^{4} \hfill \\ \quad \quad \quad +(\tfrac{1}{288} + \tfrac{1}{144}\alpha - (\tfrac{23}{{360}} + \tfrac{1}{36}\alpha )\xi^{2} )\,w^{4} \Delta t^{5} - (\tfrac{1}{360} + \tfrac{23}{{4320}}\alpha )\,\xi {\kern 1pt} w^{5} \Delta t^{6} - \tfrac{1}{4320}\alpha \,{\kern 1pt} w^{6} \Delta t^{7} . \hfill \\ \end{gathered}$$
(A3b)
$$\begin{gathered} A4_{21} = - w^{2} \Delta t + \xi {\kern 1pt} w^{3} \Delta t^{2} + (\tfrac{1}{6} - \tfrac{2}{3}\xi^{2} )w^{4} \Delta t^{3} - (\tfrac{1}{6} - \tfrac{1}{3}\xi^{2} )\,\xi {\kern 1pt} w^{5} \Delta t^{4} - \hfill \\ \quad \quad \quad (\tfrac{1}{180} - \tfrac{23}{{360}}\xi^{2} )w^{6} \Delta t^{5} + \tfrac{1}{360}\,\xi {\kern 1pt} w^{7} \Delta t^{6} . \hfill \\ \end{gathered}$$
(A3c)
$$\begin{gathered} A4_{22} =1\, - 2\xi {\kern 1pt} w\Delta t - (\tfrac{1}{3} + \tfrac{1}{6}\alpha - 2\xi^{2} ){\kern 1pt} w^{2} \Delta t^{2} + (\tfrac{1}{2} + \tfrac{1}{6}\alpha - \tfrac{4}{3}\xi^{2} )\,\xi {\kern 1pt} w^{3} \Delta t^{3} \hfill \\ \quad \quad \quad +(\tfrac{1}{72} + \tfrac{1}{36}\alpha - (\tfrac{7}{18} + \tfrac{1}{9}\alpha )\xi^{2} + \tfrac{2}{3}\xi^{4} )\,w^{4} \Delta t^{4} - (\tfrac{13}{{720}} + \tfrac{1}{36}\alpha - (\tfrac{23}{{180}} + \tfrac{1}{18}\alpha )\xi^{2} )\,\xi {\kern 1pt} w^{5} \Delta t^{5} \hfill \\ \quad \quad \quad -(\tfrac{1}{1080}\alpha - (\tfrac{1}{180} + \tfrac{23}{{2160}}\alpha )\xi^{2} )\,w^{6} \Delta t^{6} + \tfrac{1}{2160}\alpha \xi {\kern 1pt} w^{7} \Delta t^{7} . \hfill \\ \end{gathered}$$
(A3d)

whereas the entries related to the load operator vectors L2, L3 and L4 may be expressed as:

$$L2_{11} =\tfrac{1}{2}\Delta t\,(1 - \xi w\Delta t).$$
(A4a)
$$L2_{21} =1 - \xi w\Delta t.$$
(A4b)
$$L2_{12} =0.$$
(A4c)
$$L2_{22} =0.$$
(A4d)
$$L3_{11} =\tfrac{1}{24}\Delta t\,(12 - 8\xi w\Delta t - w^{2} \Delta t^{2} ).$$
(A5a)
$$L3_{21} =1 - \xi w\Delta t - \tfrac{1}{6}w^{2} \Delta t^{2} (1 - 4\xi^{2} ) + \tfrac{1}{12}\xi w^{3} \Delta t^{3} .$$
(A5b)
$$L3_{12} =\tfrac{1}{144}\Delta t^{2} \,(12 - 12\xi w\Delta t + 8\xi^{2} w^{2} \Delta t^{2} + \xi w^{3} \Delta t^{3} ).$$
(A5c)
$$L3_{22} = - \tfrac{1}{6}\xi w\Delta t^{2} + \tfrac{1}{6}\xi^{2} w^{2} \Delta t^{3} + \tfrac{1}{36}\xi w^{3} \Delta t^{4} (1 - 4\xi^{2} ) - \tfrac{1}{72}\xi^{2} w^{4} \Delta t^{5} .$$
(A5d)
$$L4_{11} =\tfrac{1}{720}\Delta t\,(360 - 240\xi w\Delta t - 30w^{2} \Delta t^{2} (1 - 4\xi^{2} ) + 23\xi w^{3} \Delta t^{3} + w^{4} \Delta t^{4} ).$$
(A6a)
$$\begin{gathered} L4_{21} =1 - \xi w\Delta t - \tfrac{1}{6}w^{2} \Delta t^{2} (1 - 4\xi^{2} ) + \tfrac{1}{6}\xi w^{3} \Delta t^{3} (1 - 2\xi^{2} ) \hfill \\ \quad \quad \quad + \tfrac{1}{360}w^{4} \Delta t^{4} (2 - 23\xi^{2} ) - \tfrac{1}{360}\xi w^{5} \Delta t^{5} . \hfill \\ \end{gathered}$$
(A6b)
$$\begin{gathered} L4_{12} =\tfrac{1}{34560}\Delta t^{2} \,(2880 - 2880\xi w\Delta t - 120w^{2} \Delta t^{2} (3 - 16\xi^{2} ) + 120\xi w^{3} \Delta t^{3} (3 - 8\xi^{2} ) + \hfill \\ \quad \quad \quad w^{4} \Delta t^{4} (15 - 184\xi^{2} ) - 8\xi w^{5} \Delta t^{5} ). \hfill \\ \end{gathered}$$
(A6c)
$$\begin{gathered} L4_{22} = - \tfrac{1}{6}\xi w\Delta t^{2} - \tfrac{1}{24}w^{2} \Delta t^{3} (1 - 4\xi^{2} ) + \tfrac{1}{9}\xi w^{3} \Delta t^{4} (\tfrac{7}{16} - \xi^{2} ) + \hfill \\ \quad \quad \quad \tfrac{1}{576}w^{4} \Delta t^{5} (1 - 20\xi^{2} + 32\xi^{4} ) - \xi w^{5} \Delta t^{6} (\tfrac{31}{{17280}} - \tfrac{23}{{2160}}\xi^{2} ) + \tfrac{1}{2160}\xi^{2} w^{6} \Delta t^{7} . \hfill \\ \end{gathered}$$
(A6d)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, D. Three novel truly-explicit time-marching procedures considering adaptive dissipation control. Engineering with Computers 38, 3251–3268 (2022). https://doi.org/10.1007/s00366-021-01290-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01290-1

Keywords

Navigation