Skip to main content
Log in

A comparative study of different dynamic condensation techniques applied to multi-damage identification of FGM and FG-CNTRC plates

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The dynamic condensation method has been recognized as an effective alternative for structural damage identification using spatially-incomplete modal measurements. However, comparative studies of different dynamic condensation techniques applied to the subject of structural damage identification have been scarcely found, especially for composite structures. In this regard, we conduct a comparative study of six typical dynamic condensation techniques utilized for addressing damage identification problems of composite plates made of functionally graded materials (FGM) and functionally graded carbon nanotube-reinforced composite (FG-CNTRC) materials. Firstly, the six techniques consisting of Guyan’s method, Kidder’s method, Neumann series expansion-based second-order model reduction (NSEMR-II) method, improved reduced system (IRS) method, iterated IRS (IIRS) method, and iterative order reduction (IOR) method are reviewed. Then, their performance for reduced Eigen and optimization-damage identification problems are evaluated by studying two numerical examples of FGM plate and FG-CNTRC plate. For solving the optimization-damage identification problem of plate structures, the article proposes to use a hybrid global–local algorithm, Manta Ray Foraging Optimization—Sequential Quadratic Programming (MRFO-SQP), where the MRFO algorithm is utilized for global exploration and the SQP algorithm is used for the local searching process. The comparative study indicates that the IOR technique is the best dynamic condensation technique and is effective for addressing the structural damage identification problems when comparing with the other five techniques. It is also found that the damage identification approach based on the hybrid MRFO–SQP algorithm combined with the IOR technique can archive the high accuracy and low computational cost for damage localization and quantification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Noor AK (1994) Recent advances and applications of reduction methods. Appl Mech Rev 47:125–146. https://doi.org/10.1115/1.3111075

    Article  Google Scholar 

  2. Koutsovasilis P, Beitelschmidt M (2008) Comparison of model reduction techniques for large mechanical systems. Multibody Syst Dyn 20:111–128. https://doi.org/10.1007/s11044-008-9116-4

    Article  MathSciNet  MATH  Google Scholar 

  3. Wagner MB, Younan A, Allaire P, Cogill R (2010) Model reduction methods for rotor dynamic analysis: a survey and review. Int J Rotating Mach. https://doi.org/10.1155/2010/273716

    Article  Google Scholar 

  4. Ghannadi P, Kourehli SS (2018) Investigation of the accuracy of different finite element model reduction techniques. Struct Monit Maint 5:417–428. https://doi.org/10.12989/smm.2018.5.3.417

    Article  Google Scholar 

  5. Thomas PV, Elsayed MSA, Walch D (2019) Review of model order reduction methods and their applications in aeroelasticity loads analysis for design optimization of complex airframes. J Aerosp Eng 32:1–17. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000972

    Article  Google Scholar 

  6. Sehgal S, Kumar H (2016) Structural dynamic model updating techniques: a state of the art review. Arch Comput Methods Eng 23:515–533. https://doi.org/10.1007/s11831-015-9150-3

    Article  MATH  Google Scholar 

  7. Sarmadi H, Karamodin A, Entezami A (2016) A new iterative model updating technique based on least squares minimal residual method using measured modal data. Appl Math Model. https://doi.org/10.1016/j.apm.2016.07.015

    Article  MathSciNet  MATH  Google Scholar 

  8. Mercer JF, Aglietti GS, Kiley AM (2016) Model reduction and sensor placement methods for spacecraft finite element model validation. AIAA J 1–15. doi: https://doi.org/10.2514/1.J054976

  9. Dinh-Cong D, Dang-Trung H, Nguyen-Thoi T (2018) An efficient approach for optimal sensor placement and damage identification in laminated composite structures. Adv Eng Softw 119:48–59. https://doi.org/10.1016/j.advengsoft.2018.02.005

    Article  Google Scholar 

  10. Gupta P, Giridhara G, Gopalakrishnan S (2008) Damage detection based on damage force indicator using reduced-order FE models. Int J Comput Methods Eng Sci Mech 9:154–170. https://doi.org/10.1080/15502280801909127

    Article  MATH  Google Scholar 

  11. Dinh-Cong D, Pham-Toan T, Nguyen-Thai D, Nguyen-Thoi T (2019) Structural damage assessment with incomplete and noisy modal data using model reduction technique and LAPO algorithm. Struct Infrastruct Eng 15:1436–1449. https://doi.org/10.1080/15732479.2019.1624785

    Article  Google Scholar 

  12. Guyan RJ (1965) Reduction of stiffness and mass matrices. AIAA J 3:380–380. https://doi.org/10.2514/3.2874

    Article  Google Scholar 

  13. Kidder RL (1973) Reduction of structural frequency equations. AIAA J 11:892–892. https://doi.org/10.2514/3.6852

    Article  Google Scholar 

  14. Miller CA (1980) Dynamic reduction of structural models. J Struct Div 106:2097–2108

    Article  Google Scholar 

  15. Suarez LE, Singh MP (1992) Dynamic condensation method for structural eigenvalue analysis. AIAA J 30:1046–1054. https://doi.org/10.2514/3.11026

    Article  Google Scholar 

  16. O’Callahan JC (1989) A procedure for an improved reduced system (IRS) model. In: Proc. 7th Int. modal Anal. Conf. pp 17–21

  17. Friswell MI, Garvey SD, Penny JET (1995) Model reduction using dynamic and iterated IRS techniques. J Sound Vib 186:311–323. https://doi.org/10.1006/jsvi.1995.0451

    Article  MATH  Google Scholar 

  18. Friswell MI, Garvey SD, Penny JET (1998) The convergence of the iterated IRS method. J Sound Vib 211:123–132. https://doi.org/10.1006/jsvi.1997.1368

    Article  MathSciNet  MATH  Google Scholar 

  19. Xia Y, Lin R-M (2004) Improvement on the iterated IRS method for structural eigensolutions. J Sound Vib 270:713–727. https://doi.org/10.1016/S0022-460X(03)00188-3

    Article  Google Scholar 

  20. Xia Y, Lin R (2004) A new iterative order reduction (IOR) method for eigensolutions of large structures. Int J Numer Methods Eng 59:153–172. https://doi.org/10.1002/nme.876

    Article  MATH  Google Scholar 

  21. Yang QW (2009) Model reduction by Neumann series expansion. Appl Math Model 33:4431–4434. https://doi.org/10.1016/j.apm.2009.02.012

    Article  MathSciNet  MATH  Google Scholar 

  22. Dinh-Cong D, Vo-Duy T, Nguyen-Thoi T (2018) Damage assessment in truss structures with limited sensors using a two-stage method and model reduction. Appl Soft Comput 66:264–277. https://doi.org/10.1016/j.asoc.2018.02.028

    Article  Google Scholar 

  23. Yin T, Zhu HP, Fu SJ (2019) Model selection for dynamic reduction-based structural health monitoring following the Bayesian evidence approach. Mech Syst Signal Process 127:306–327. https://doi.org/10.1016/j.ymssp.2019.03.009

    Article  Google Scholar 

  24. Yin T, Jiang Q-H, Yuen K-V (2017) Vibration-based damage detection for structural connections using incomplete modal data by Bayesian approach and model reduction technique. Eng Struct 132:260–277. https://doi.org/10.1016/j.engstruct.2016.11.035

    Article  Google Scholar 

  25. Mousavi M, Gandomi AH (2016) A hybrid damage detection method using dynamic-reduction transformation matrix and modal force error. Eng Struct 111:425–434. https://doi.org/10.1016/j.engstruct.2015.12.033

    Article  Google Scholar 

  26. Kao C-Y, Chen X-Z, Jan JC, Hung S-L (2016) Locating damage to structures using incomplete measurements. J Civ Struct Heal Monit 6:817–838. https://doi.org/10.1007/s13349-016-0202-7

    Article  Google Scholar 

  27. Zare Hosseinzadeh A, Ghodrati Amiri G, Seyed Razzaghi SA et al (2016) Structural damage detection using sparse sensors installation by optimization procedure based on the modal flexibility matrix. J Sound Vib 381:65–82. https://doi.org/10.1016/j.jsv.2016.06.037

    Article  Google Scholar 

  28. Kourehli SS (2015) LS-SVM Regression for structural damage diagnosis using the iterated improved reduction system. Int J Struct Stab Dyn 16:1550018. https://doi.org/10.1142/S0219455415500182

    Article  MathSciNet  MATH  Google Scholar 

  29. Zare Hosseinzadeh A, Bagheri A, Ghodrati Amiri G, Koo K-Y (2014) A flexibility-based method via the iterated improved reduction system and the cuckoo optimization algorithm for damage quantification with limited sensors. Smart Mater Struct 23:045019. https://doi.org/10.1088/0964-1726/23/4/045019

    Article  Google Scholar 

  30. Araújo dos Santos JV, Mota Soares CM, Mota Soares CA, Maia NMM (2003) Structural damage identification: Influence of model incompleteness and errors. Compos Struct 62:303–313. https://doi.org/10.1016/j.compstruct.2003.09.029

    Article  Google Scholar 

  31. Dinh-Cong D, Pham-Duy S, Nguyen-Thoi T (2018) Damage detection of 2D frame structures using incomplete measurements by optimization procedure and model reduction. J Adv Eng Comput 2:164–173. https://doi.org/10.25073/jaec.201823.203

    Article  Google Scholar 

  32. Saint Martin LB, Mendes RU, Cavalca KL (2020) Model reduction and dynamic matrices extraction from state-space representation applied to rotating machines. Mech Mach Theory 149:103804. https://doi.org/10.1016/j.mechmachtheory.2020.103804

    Article  Google Scholar 

  33. Dinh-cong D, Nguyen-thoi T, Nguyen DT (2021) A two-stage multi-damage detection approach for composite structures using MKECR-Tikhonov regularization iterative method and model updating procedure. Appl Math Model 90:114–130. https://doi.org/10.1016/j.apm.2020.09.002

    Article  MathSciNet  MATH  Google Scholar 

  34. Kourehli S, Amiri GG, Ghafory-Ashtiany M, Bagheri A (2013) Structural damage detection based on incomplete modal data using pattern search algorithm. J Vib Control 19:821–833. https://doi.org/10.1177/1077546312438428

    Article  Google Scholar 

  35. Zare Hosseinzadeh A, Ghodrati Amiri G, Seyed Razzaghi SA (2016) Model-based identification of damage from sparse sensor measurements using Neumann series expansion. Inverse Probl Sci Eng 5977:1–21. https://doi.org/10.1080/17415977.2016.1160393

    Article  MATH  Google Scholar 

  36. Tani J, Liu G-R (1993) SH surface waves in functionally gradient piezoelectric plates. JSME Int journal Ser A Mech Mater Eng 36:152–155

    Google Scholar 

  37. Liu GR, Han X, Lam KY (1999) Stress waves in functionally gradient materials and its use for material characterization. Compos Part B Eng 30:383–394. https://doi.org/10.1016/S1359-8368(99)00010-4

    Article  Google Scholar 

  38. Vinyas M, Harursampath D, Nguyen-Thoi T (2020) Influence of active constrained layer damping on the coupled vibration response of functionally graded magneto-electro-elastic plates with skewed edges. Def Technol 16:1019–1038. https://doi.org/10.1016/j.dt.2019.11.016

    Article  Google Scholar 

  39. Vinyas M, Harursampath D, Kattimani SC (2020) On vibration analysis of functionally graded carbon nanotube reinforced magneto-electro-elastic plates with different electro-magnetic conditions using higher order finite element methods. Def Technol. https://doi.org/10.1016/j.dt.2020.03.012

    Article  Google Scholar 

  40. Mahesh V, Harursampath D (2020) Nonlinear deflection analysis of CNT/magneto-electro-elastic smart shells under multi-physics loading. Mech Adv Mater Struct 0:1–25. doi: https://doi.org/10.1080/15376494.2020.1805059

  41. Mahesh V, Harursampath D (2020) Nonlinear vibration of functionally graded magneto-electro-elastic higher order plates reinforced by CNTs using FEM. Eng Comput. https://doi.org/10.1007/s00366-020-01098-5

    Article  Google Scholar 

  42. Vinyas M (2020) On frequency response of porous functionally graded magneto-electro- elastic circular and annular plates with different electro-magnetic conditions using HSDT. Compos Struct 240:112044. https://doi.org/10.1016/j.compstruct.2020.112044

    Article  Google Scholar 

  43. Mahesh V (2020) Nonlinear deflection of carbon nanotube reinforced multiphase magneto-electro-elastic plates in thermal environment considering pyrocoupling effects. Math Methods Appl Sci 15–19. doi: https://doi.org/10.1002/mma.6858

  44. Han X, Liu GR, Lam KY, Ohyoshi T (2000) Quadratic layer element for analyzing stress waves in FGMS and its application in material characterization. J Sound Vib 236:307–321. https://doi.org/10.1006/jsvi.2000.2966

    Article  Google Scholar 

  45. Liu GR, Han X, Xu YG, Lam KY (2001) Material characterization of functionally graded material by means of elastic waves and a progressive-learning neural network. Compos Sci Technol 61:1401–1411. https://doi.org/10.1016/S0266-3538(01)00033-1

    Article  Google Scholar 

  46. Han X, Liu GR, Xi ZC, Lam KY (2002) Characteristics of waves in a functionally graded cylinder. Int J Numer Methods Eng 53:653–676. https://doi.org/10.1002/nme.305

    Article  MATH  Google Scholar 

  47. Han X, Liu GR (2003) Computational inverse technique for material characterization of functionally graded materials. AIAA J 41:288–295. https://doi.org/10.2514/2.1942

    Article  Google Scholar 

  48. Han X, Liu GR, Ohyoshi T (2004) Dispersion and characteristic surfaces of waves in hybrid multilayered piezoelectric circular cylinders. Comput Mech 33:334–344. https://doi.org/10.1007/s00466-003-0536-y

    Article  MATH  Google Scholar 

  49. Dai KY, Liu GR, Lim KM et al (2004) A meshfree radial point interpolation method for analysis of functionally graded material (FGM) plates. Comput Mech 34:213–223. https://doi.org/10.1007/s00466-004-0566-0

    Article  MATH  Google Scholar 

  50. Dai KY, Liu GR, Han X, Lim KM (2005) Thermomechanical analysis of functionally graded material (FGM) plates using element-free Galerkin method. Comput Struct 83:1487–1502. https://doi.org/10.1016/j.compstruc.2004.09.020

    Article  Google Scholar 

  51. Vinyas M (2019) A higher-order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods. Compos Part B Eng 158:286–301. https://doi.org/10.1016/j.compositesb.2018.09.086

    Article  Google Scholar 

  52. Zhao W, Zhang Z, Wang L (2020) Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications. Eng Appl Artif Intell 87:103300. https://doi.org/10.1016/j.engappai.2019.103300

    Article  Google Scholar 

  53. Boggs PT, Tolle JW (1995) Sequential quadratic programming. Acta Numer 4:1–51. https://doi.org/10.1017/S0962492900002518

    Article  MathSciNet  MATH  Google Scholar 

  54. Dinh-Cong D, Nguyen-Thoi T, Vinyas M, Nguyen DT (2019) Two-stage structural damage assessment by combining modal kinetic energy change with symbiotic organisms search. Int J Struct Stab Dyn 19:1950120. https://doi.org/10.1142/S0219455419501207

    Article  Google Scholar 

  55. Dinh-Cong D, Nguyen-Thoi T, Nguyen DT (2020) A FE model updating technique based on SAP2000-OAPI and enhanced SOS algorithm for damage assessment of full-scale structures. Appl Soft Comput 89:106100. https://doi.org/10.1016/j.asoc.2020.106100

    Article  Google Scholar 

  56. Selem SI, Hasanien HM, El‐Fergany AA (2020) Parameters extraction of PEMFC’s model using manta rays foraging optimizer. Int J Energy Res 1–12. doi: https://doi.org/10.1002/er.5244

  57. Zhao X, Lee YY, Liew KM (2009) Free vibration analysis of functionally graded plates using the element-free kp-Ritz method. J Sound Vib 319:918–939. https://doi.org/10.1016/j.jsv.2008.06.025

    Article  Google Scholar 

  58. Allemang RJ, Brown DL (1982) A correlation coefficient for modal vector analysis. In: Proc. 1st Int. modal Anal. Conf. SEM, Orlando, pp 110–116

  59. Yang X-S, Suash Deb (2009) Cuckoo Search via Lévy flights,. In: 2009 World Congr. Nat. Biol. Inspired Comput. IEEE, pp 210–214

  60. Zhao W, Wang L, Zhang Z (2019) Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm. Neural Comput Appl. https://doi.org/10.1007/s00521-019-04452-x

    Article  Google Scholar 

  61. Zhu P, Lei ZX, Liew KM (2012) Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Compos Struct 94:1450–1460. https://doi.org/10.1016/j.compstruct.2011.11.010

    Article  Google Scholar 

  62. Han Y, Elliott J (2007) Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput Mater Sci 39:315–323. https://doi.org/10.1016/j.commatsci.2006.06.011

    Article  Google Scholar 

  63. Zhang CL, Shen HS (2006) Temperature-dependent elastic properties of single-walled carbon nanotubes: Prediction from molecular dynamics simulation. Appl Phys Lett 89:2004–2007. https://doi.org/10.1063/1.2336622

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant number 107.02-2019.330.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Nguyen-Thoi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinh-Cong, D., Truong, T.T. & Nguyen-Thoi, T. A comparative study of different dynamic condensation techniques applied to multi-damage identification of FGM and FG-CNTRC plates. Engineering with Computers 38 (Suppl 5), 3951–3975 (2022). https://doi.org/10.1007/s00366-021-01312-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01312-y

Keywords

Navigation