Skip to main content
Log in

An enriched finite element method for efficient solutions of transient heat diffusion problems with multiple heat sources

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

We propose an efficient formulation using the framework of Generalized Finite Element Method (GFEM) for the solutions of transient heat diffusion problems having multiple heat sources in the solution domain. The purpose here is to use minimal computational resources and rely on coarse mesh grids to capture the sharp variations of temperature field. We use Gaussian functions of global nature to enrich the GFEM approximation space which ensure efficient solution in the whole solution domain. To capture steep thermal gradients at multiple locations, a multiplicity of enrichment functions is used and the peaks of enrichment functions are centred at the cores of heat sources. The advantage of this approach is that no further degrees of freedom (DOFs) are added to capture the solution at multiple locations. Besides, the enrichment functions are time-independent; the temporal variation of temperature is embedded in the definition of the enrichment functions. This formulation requires the assembly of system matrix once and only the right-hand side of the system of equations is updated at subsequent time steps which results in a significant reduction in the overall computational time. We consider problems in two-dimensional (2D) and three-dimensional (3D) domains to show the effectiveness of the proposed approach. A reduction of more than 95% in DOFs and more than 80% in computational time is achieved as compared to the h-version of finite element method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Faghri A, Buchko M (1991) Experimental and numerical analysis of low-temperature heat pipes with multiple heat sources. J Heat Transfer 113(3):728–734

    Article  Google Scholar 

  2. Han X, Wang Y, Liang Q (2018) Investigation of the thermal performance of a novel flat heat pipe sink with multiple heat sources. Int Commun Heat Mass Transfer 94:71–76

    Article  Google Scholar 

  3. Zhao F-Y, Tang G-F, Liu D (2006) Conjugate natural convection in enclosures with external and internal heat sources. Int J Eng Sci 44(3–4):148–165

    Article  Google Scholar 

  4. Liu P, Cui X, Deng J, Li S, Li Z, Chen L (2019) Investigation of thermal responses during metallic additive manufacturing using a “Tri-Prism” finite element method. Int J Thermal Sci 136:217–229

  5. Lin D (2014) Hybrid welding with multiple heat sources. US Patent 8,729,424

  6. Cho J, Na S-J (2009) Three-dimensional analysis of molten pool in GMA-laser hybrid welding. Welding J 88(2):35s–43s

    Google Scholar 

  7. Wiriyasart S, Naphon P (2019) Numerical study on air ventilation in the workshop room with multiple heat sources. Case Stud Thermal Eng 13:100405

    Article  Google Scholar 

  8. Simões N, Tadeu A (2006) Transient conduction and convection heat transfer across a multi-layer floor subjected to multiple heat sources. Build Environ 41(10):1299–1310

    Article  Google Scholar 

  9. Schweitzer D, Ender F, Hantos G, Szabó PG (2015) Thermal transient characterization of semiconductor devices with multiple heat sources-Fundamentals for a new thermal standard. Microelectron J 46(2):174–182

    Article  Google Scholar 

  10. Lai J (2016) A mathematical model of circumstellar and circumplanetary habitable zones accounting for multiple heat sources. The iScientist 1(1):1–14

    Google Scholar 

  11. Chen H, Min C, Gibou F (2007) A supra-convergent finite difference scheme for the Poisson and heat equations on irregular domains and non-graded adaptive Cartesian grids. J Sci Comput 31(1–2):19–60

    Article  MathSciNet  MATH  Google Scholar 

  12. Mohamed M, Seaid M, Trevelyan J, Laghrouche O (2013a) A partition of unity FEM for time-dependent diffusion problems using multiple enrichment functions. Int J Numer Meth Eng 93(3):245–265

    Article  MathSciNet  MATH  Google Scholar 

  13. Iqbal M, Gimperlein H, Mohamed MS, Laghrouche O (2017) An a posteriori error estimate for the generalized finite element method for transient heat diffusion problems. Int J Numer Meth Eng 110(12):1103–1118

    Article  MathSciNet  Google Scholar 

  14. El Kahoui A, Malek M, Izem N, Mohamed MS, Seaid M (2020) Partition of unity finite element analysis of nonlinear transient diffusion problems using p-version refinement. Comput Model Eng Sci. https://doi.org/10.32604/cmes.2020.010874

  15. Tezaur R, Zhang L, Farhat C (2008) A discontinuous enrichment method for capturing evanescent waves in multiscale fluid and fluid/solid problems. Comput Methods Appl Mech Eng 197(19):1680–1698

    Article  MathSciNet  MATH  Google Scholar 

  16. Melenk JM, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139(1):289–314

    Article  MathSciNet  MATH  Google Scholar 

  17. Melenk JM, Babuška I (1997) The partition of unity method. Int J Numer Meth Eng 40:727–758

    Article  MathSciNet  MATH  Google Scholar 

  18. Strouboulis T, Babuška I, Copps K (2000a) The design and analysis of the generalized finite element method. Comput Methods Appl Mech Eng 181(1):43–69

    Article  MathSciNet  MATH  Google Scholar 

  19. Strouboulis T, Babuška I, Hidajat R (2006) The generalized finite element method for Helmholtz equation: theory, computation, and open problems. Comput Methods Appl Mech Eng 195(37):4711–4731

    Article  MathSciNet  MATH  Google Scholar 

  20. Strouboulis T, Copps K, Babuška I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. Int J Numer Meth Eng 47(8):1401–1417

    Article  MathSciNet  MATH  Google Scholar 

  21. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Meth Eng 45(5):601–620

    Article  MATH  Google Scholar 

  22. Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Eng 46(1):131–150

    Article  MathSciNet  MATH  Google Scholar 

  23. Fries T-P, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Meth Eng 84(3):253–304

    Article  MathSciNet  MATH  Google Scholar 

  24. Babuška I, Banerjee U (2012) Stable generalized finite element method (SGFEM). Comput Methods Appl Mech Eng 201:91–111

  25. Abaqus V (2019) 6.14 Documentation, Dassault Systemes Simulia Corporation

  26. LS-DYNA user’s manual (2019) LS-DYNA, Livermore Software Technology Corporation, Livermore, CA, USA, p 4

  27. Munts EA, Hulshoff SJ, De Borst R (2003) The partition-of-unity method for linear diffusion and convection problems: Accuracy, stabilization and multiscale interpretation. Int J Numer Meth Fluids 43(2):199–213

    Article  MathSciNet  MATH  Google Scholar 

  28. O’Hara P, Duarte C, Eason T (2009) Generalized finite element analysis of three-dimensional heat transfer problems exhibiting sharp thermal gradients. Comput Methods Appl Mech Eng 198(21):1857–1871

    Article  MATH  Google Scholar 

  29. O’Hara P, Duarte C, Eason T (2011) Transient analysis of sharp thermal gradients using coarse finite element meshes. Comput Methods Appl Mech Eng 200(5):812–829

    Article  MathSciNet  MATH  Google Scholar 

  30. O’Hara P, Duarte C, Eason T (2010) Investigation of allowable time-step sizes for generalized finite element analysis of the transient heat equation. Interaction Multiscale Mech 3(3):235–255

    Article  Google Scholar 

  31. Hanoglu U, Sarler B et al (2011) Thermo-mechanical analysis of hot shape rolling of steel by a meshless method. Procedia Eng 10:3173–3178

    Article  Google Scholar 

  32. Yao G, Šarler B et al (2012) Assessment of global and local meshless methods based on collocation with radial basis functions for parabolic partial differential equations in three dimensions. Eng Anal Boundary Elem 36(11):1640–1648

    Article  MathSciNet  MATH  Google Scholar 

  33. Šarler B, Vertnik R, Kosec G et al (2012) Radial basis function collocation method for the numerical solution of the two-dimensional transient nonlinear coupled Burgers’ equations. Appl Math Model 36(3):1148–1160

    Article  MathSciNet  MATH  Google Scholar 

  34. Van der Meer F, Al-Khoury R, Sluys L (2009) Time-dependent shape functions for modeling highly transient geothermal systems. Int J Numer Meth Eng 77(2):240

    Article  MathSciNet  MATH  Google Scholar 

  35. Cosimo A, Fachinotti V, Cardona A (2013) An enrichment scheme for solidification problems. Comput Mech 52(1):17–35

    Article  MathSciNet  MATH  Google Scholar 

  36. Coppola-Owen A, Codina R (2005) Improving Eulerian two-phase flow finite element approximation with discontinuous gradient pressure shape functions. Int J Numer Meth Fluids 49(12):1287–1304

    Article  MathSciNet  MATH  Google Scholar 

  37. Zeller C, Surendran B, Zaeh MF (2018) Parameterized extended finite element method for high thermal gradients. J Comput Design Eng 5(3):329–336

    Article  Google Scholar 

  38. Chessa J, Wang H, Belytschko T (2003) On the construction of blending elements for local partition of unity enriched finite elements. Int J Numer Meth Eng 57(7):1015–1038

    Article  MATH  Google Scholar 

  39. Tarancón J, Vercher A, Giner E, Fuenmayor F (2009) Enhanced blending elements for XFEM applied to linear elastic fracture mechanics. Int J Numer Meth Eng 77(1):126–148

    Article  MathSciNet  MATH  Google Scholar 

  40. Ventura G, Gracie R, Belytschko T (2009) Fast integration and weight function blending in the extended finite element method. Int J Numer Meth Eng 77(1):1–29

    Article  MathSciNet  MATH  Google Scholar 

  41. Agathos K, Chatzi E, Bordas SP, Talaslidis D (2016) A well-conditioned and optimally convergent XFEM for 3D linear elastic fracture. Int J Numer Meth Eng 105(9):643–677

    Article  MathSciNet  Google Scholar 

  42. Gracie R, Wang H, Belytschko T (2008) Blending in the extended finite element method by discontinuous Galerkin and assumed strain methods. Int J Numer Meth Eng 74(11):1645–1669

    Article  MathSciNet  MATH  Google Scholar 

  43. Agathos K, Chatzi E, Bordas SP (2019) A unified enrichment approach addressing blending and conditioning issues in enriched finite elements. Comput Methods Appl Mech Eng 349:673–700

    Article  MathSciNet  MATH  Google Scholar 

  44. Mohamed MS, Seaïd M, Trevelyan J, Laghrouche O (2013b) Time-independent hybrid enrichment for finite element solution of transient conduction-radiation in diffusive grey media. J Comput Phys 251:81–101

    Article  MathSciNet  MATH  Google Scholar 

  45. Mohamed MS, Seaïd M, Trevelyan J, Laghrouche O (2014) An enriched finite element model with \(q\)-refinement for radiative boundary layers in glass cooling. J Comput Phys 258:718–737

    Article  MathSciNet  MATH  Google Scholar 

  46. Malek M, Izem N, Mohamed MS, Seaid M, Laghrouche O (2019) A partition of unity finite element method for three-dimensional transient diffusion problems with sharp gradients. J Comput Phys 396:702–717

    Article  MathSciNet  MATH  Google Scholar 

  47. Iqbal M, Masood K, Aljuhni A, Ahmad A (2020a) Generalized finite element method with time-independent enrichment functions for 3D transient heat diffusion problems. Int J Heat Mass Transf 149:118969

    Article  Google Scholar 

  48. Malek M, Izem N, Seaid M et al (2020) A three-dimensional enriched finite element method for nonlinear transient heat transfer in functionally graded materials. Int J Heat Mass Transf 155:119804

    Article  Google Scholar 

  49. Iqbal M, Gimperlein H,  Laghrouche O,  Alam K,  Shadi Mohamed M,  Abid M (2020b) A residual a posteriori error estimate for partition of unity finite elements for three-dimensional transient heat diffusion problems using multiple global enrichment functions. Int J Numer Methods Eng 121(12):2727–2746

  50. Iqbal M, Alam K, Gimperlein H, Laghrouche O, Mohamed MS (2020c) Effect of enrichment functions on GFEM solutions of time-dependent conduction heat transfer problems. Appl Math Model. https://doi.org/10.1016/j.apm.2020.04.018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Iqbal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, M., Alam, K., Ahmad, A. et al. An enriched finite element method for efficient solutions of transient heat diffusion problems with multiple heat sources. Engineering with Computers 38, 3381–3397 (2022). https://doi.org/10.1007/s00366-021-01328-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01328-4

Keywords

Navigation