Skip to main content
Log in

Orthonormal Bernoulli polynomials for space–time fractal-fractional modified Benjamin–Bona–Mahony type equations

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this study, a new fractal-fractional (FF) derivative is defined by coupling the local conformable derivative and non-local Caputo fractional derivative. Using the defined derivative, a space–time FF version of the modified Benjamin–Bona–Mahony type equations is introduced. A collocation technique based on the orthonormal Bernoulli polynomials and their derivative matrices (including the ordinary and FF derivative matrices obtained in this study) is adopted for solving such equations. The presented method converts solving this equation to solve a simple system of algebraic equations. Some numerical problems are provided to show the accuracy of the expressed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ghanbari B, Atangana A (2020) Some new edge detecting techniques based on fractional derivatives with non-local and non-singular kernels. Advances in Difference Equations. https://doi.org/10.1186/s13662-020-02890-9

    Article  MathSciNet  Google Scholar 

  2. Li M (2020) Multi-fractional generalized Cauchy process and its application to teletraffic. Physica A: Statistical Mechanics and its Applications 550:123982

    MathSciNet  MATH  Google Scholar 

  3. Li M (2020) Integral representation of fractional derivative of delta function. Fractal and Fractional 4(3), 1–6

    Google Scholar 

  4. Kulish W, Lage JL (2002) Application of fractional calculus to fluid mechanics. Journal of Fluids Engineering 124(3), 803–806

    Google Scholar 

  5. Yang XJ, Gao F, Ju Y (2020) General fractional derivatives with applications in viscoelasticity. Academic Press, New York

    MATH  Google Scholar 

  6. Yang XJ, Machado JAT (2017) A new fractional operator of variable order: Application in the description of anomalous diffusion. Physica A 281:276–1283

    MathSciNet  MATH  Google Scholar 

  7. Owolabi K (2010) Fractional differential equations in electrochemistry. Advances in Engineering Software 41(1), 9–12

    Google Scholar 

  8. Owolabi K, Atangana A (2019) On the formulation of Adams-Bashforth scheme with Atangana-Baleanu-Caputo fractional derivative to model chaotic problems. ANZIAM Journal 29(2):023111

    MathSciNet  MATH  Google Scholar 

  9. Roohi R, Heydari MH, Bavi O, Emdad H (2021) Chebyshev polynomials for generalized couette flow of fractional Jeffrey nanofluid subjected to several thermochemical effects. Engineering with Computers 37:579–595

    Google Scholar 

  10. Yu Q, Liu F, Turner I, Burrage K, Vegh V (2013) The use of a Riesz fractional differential based approach for texture enhancement in image processing. ANZIAM Journal 54:590–607

    MathSciNet  MATH  Google Scholar 

  11. Yang XJ (2012) Advanced Local Fractional Calculus and Its Applications. World Science, New York, America

    Google Scholar 

  12. Li M, Wang A (2020) Fractal teletraffic delay bounds in computer networks. Physica A: Statistical Mechanics and its Applications 557:124903

    MathSciNet  MATH  Google Scholar 

  13. Yang XJ, Gao F, Srivastava HM (2018) A new computational approach for solving nonlinear local fractional pdes. Journal of Computational and Applied Mathematics 339:285–296

    MathSciNet  MATH  Google Scholar 

  14. Ahmad J, Mohyud-Din ST, Yang XJ (2014) Local fractional decomposition method on wave equation in fractal strings. Mitteilungen Klosterneuburg 64(2), 98–105

    Google Scholar 

  15. Kolwankar KM, Gangal AD (1998) Local fractional Fokker-Planck equation. Physical Review Letters 80(2), 214–217

    MathSciNet  MATH  Google Scholar 

  16. Yang X, Baleanu D, Zhong WP (2013) Approximate solutions for diffusion equations on cantor space-time. Proceedings of the Romanian Academy, Series A 14(2), 127–133

    MathSciNet  Google Scholar 

  17. Yang XJ, Hristov J, Srivastava HM (2014). Modelling fractal waves on shallow water surfaces via local fractional Kortewegde vries equation. Abstr Appl Anal 2014:278672. https://doi.org/10.1155/2014/278672

  18. Yang XJ, Baleanu D, Tenreiro Machado JA (2013) Systems of Navier–Stokes equations on cantor sets. Math Probl Eng 2013:769724. https://doi.org/10.1155/2013/769724

  19. Yan S, Jafari H, Jassim HK (2014) Local fractional Adomain decomposition and function decomposition methods for Laplace equation within local fractional operators. Adv Math Phys 2014:161580. https://doi.org/10.1155/2014/161580

  20. Ji FY, He CH, He CH, Zhang JJ, He JH, He JH (2020) A fractal boussinesq equation for nonlinear transverse vibration of a Nanofiber-Reinforced concrete pillar. Applied Mathematical Modelling 82:437–448

    MathSciNet  MATH  Google Scholar 

  21. Yang XJ, Tenreiro Machado J (2019) A new fractal nonlinear Burgers’ equation arising in the acoustic signals propagation. Mathematical Methods in the Applied Sciences 42(18):7539–7544

    MathSciNet  MATH  Google Scholar 

  22. Atangana A, Igret Araz S (2020) New numerical approximation for Chua attractor with fractional and fractal-fractional operators. Alexandria Engineering Journal 59(5), 3275–3296

    MATH  Google Scholar 

  23. Atangana A (2017) Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system. Chaos, Solitons and Fractals 102:396–406

    MathSciNet  MATH  Google Scholar 

  24. Rayal A, Verma SR (2020) Numerical analysis of pantograph differential equation of the stretched type associated with fractal-fractional derivatives via fractional order Legendre wavelets. Chaos, Solitons and Fractals 139:110076

    MathSciNet  MATH  Google Scholar 

  25. Abro KA, Atangana A (2020) A comparative study of convective fluid motion in rotating cavity via Atangana-Baleanu and Caputo-Fabrizio fractal-fractional differentiations. The European Physical Journal Plus 135(2), 1–16

    Google Scholar 

  26. Qureshi S, Atangana A (2020) Fractal-fractional differentiation for the modeling and mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data. Chaos, Solitons and Fractals 136:1–10

    MathSciNet  Google Scholar 

  27. Abro KA, Atangana A (2020) Mathematical analysis of Memristor through fractal-fractional differential operators: a numerical study. Math Methods Appl Sci. doi: 10.1002/mma.6378

    Article  MathSciNet  MATH  Google Scholar 

  28. Atangana A (2020) Modelling the spread of Covid-19 with new fractal-fractional operators: can the lockdown save mankind before vaccination? Chaos, Solitons and Fractals 136:109860

    MathSciNet  Google Scholar 

  29. Heydari MH, Atangana A, Avazzadeh Z (2019) Chebyshev polynomials for the numerical solution of fractal-fractional model of nonlinear Ginzburg-Landau equation. Eng Comput. https://doi.org/10.1007/s00366-019-00889-9

    Article  Google Scholar 

  30. Yang XJ, Machadoc JAT, Baleanud D, Gao F (2016) A new numerical technique for local fractional diffusion equation in fractal heat transfer. Journal of Nonlinear Science and Applications 9:5621–5628

    MathSciNet  Google Scholar 

  31. Abro KA, Atangana A (2020) Numerical study and chaotic analysis of meminductor and memcapacitor through fractal-fractional differential operator. Arab J Sci Eng. doi: 10.1007/s13369-020-04780-4

    Article  MATH  Google Scholar 

  32. Heydari MH, Hosseininia M, Avazzadeh Z (2020) An efficient wavelet-based approximation method for the coupled nonlinear fractal-fractional 2D Schrödinger equations. Eng Comput. doi: 10.1007/s00366-020-00934-y

    Article  MATH  Google Scholar 

  33. Atangana A, Akgü A, Owolabi KM (2020) Analysis of fractal fractional differential equations. Alexandria Engineering Journal 59:1117–1134

    Google Scholar 

  34. Solís-Pérez JE, Gómez-Aguilar JF, (2020) Variable-order fractal-fractional time delay equations with power, exponential and Mittag-Leffler laws and their numerical solutions. Eng Comput. https://doi.org/10.1007/s00366-020-01065-0

    Article  Google Scholar 

  35. Heydari MH, Atangana A, Avazzadeh Z (2020) Numerical solution of nonlinear fractal-fractional optimal control problems by Legendre polynomials. Math Methods Appl Sci. doi: 10.1002/mma.6326

    Article  MATH  Google Scholar 

  36. Hosseininia M, Heydari M. H, Avazzadeh Z (2020) The numerical treatment of nonlinear fractal-fractional 2D Emden-Fowler equation utilizing 2D Chelyshkov polynomials. Fractals, 28(8):2040042

    MATH  Google Scholar 

  37. Heydari MH (2020) Numerical solution of nonlinear 2D optimal control problems generated by Atangana-Riemann-Liouville fractal-fractional derivative. Applied Numerical Mathematics 150:507–518

    MathSciNet  MATH  Google Scholar 

  38. Heydari M. H, Avazzadeh Z, Yang Y (2020) Numerical treatment of the space-time fractal-fractional model of nonlinear advection-diffusion-reaction equation through the Bernstein polynomials. Fractals, 28(8):2040001

    MATH  Google Scholar 

  39. Heydari MH, Atangana A, Avazzadeh Z, yang Y (2020) Numerical treatment of the strongly coupled nonlinear fractal-fractional Schrödinger equations through the shifted Chebyshev cardinal functions. Alexandria Engineering Journal 59(4):2037–2052

    Google Scholar 

  40. Abbasbandy S, Shirzadi A (2010) The first integral method for modified Benjamin-Bona-Mahony equation. Communications in Nonlinear Science and Numerical Simulation 15:1759–1764

    MathSciNet  MATH  Google Scholar 

  41. Tariq KU, Seadawy AR (2020) On the soliton solutions to the modified Benjamin-Bona-Mahony and coupled Drinfel’d-Sokolov-Wilson models and its applications. Journal of King Saud University-Science 32:156–162

    Google Scholar 

  42. Bona J (1981) On solitary waves and their role in the evolution of long waves, applications of nonlinear analysis. Pitman, Boston, MA

    MATH  Google Scholar 

  43. Yusufoc̆lu E, Bekir A, (2008) The tanh and the sine-cosine methods for exact solutions of the MBBM and the Vakhnenko equations. Chaos, Solitons and Fractals 38:1126–1133

    MathSciNet  MATH  Google Scholar 

  44. Yusufoc̆lu E, (2008) New solitonary solutions for the MBBM equations using exp-function method. Physics Letter A 372:442–446

    Google Scholar 

  45. Omrani K (2006) The convergence of fully discrete Galerkin approximations for the Benjamin-Bona-Mahony (BBM) equation. Applied Mathematics and Computation 180:614–621

    MathSciNet  MATH  Google Scholar 

  46. Zhao X, Xu W (2007) Travelling wave solutions for a class of the generalized Benjamin-Bona-Mahony equations. Applied Mathematics and Computation 192:507–519

    MathSciNet  MATH  Google Scholar 

  47. Arora S, Jain R, Kukreja VK (2020) Solution of Benjamin-Bona-Mahony-Burgers equation using collocation method with quintic Hermite splines. Applied Numerical Mathematics 154:1–16

    MathSciNet  MATH  Google Scholar 

  48. Oruc G, Borluk H, Muslu GM (2020) The generalized fractional Benjamin-Bona-Mahony equation: Analytical and numerical results. Physica D 409:132499

    MathSciNet  MATH  Google Scholar 

  49. Wang YM (2020) A high-order linearized and compact difference method for the time-fractional Benjamin-Bona-Mahony equation. Applied Mathematics Letters 105:106339

    MathSciNet  MATH  Google Scholar 

  50. Zhang H, Jiang X, Zheng R (2020) Chebyshev-Legendre spectral method and inverse problem analysis for the space fractional Benjamin-Bona-Mahony equation. Numerical Algorithms 84:513–536

    MathSciNet  MATH  Google Scholar 

  51. Lyu P, Vong S (2019) A high-order method with a temporal nonuniform mesh for a time-fractional Benjamin-Bona-Mahony equation. Journal of Scientific Computing 80:1607–1628

    MathSciNet  MATH  Google Scholar 

  52. Canuto C, Hussaini M, Quarteroni A, Zang T (1988) Spectral Methods in Fluid Dynamics. Springer-Verlage, Berlin

    MATH  Google Scholar 

  53. Moradi L, Mohammadi F (2019) A comparative approach for time- delay fractional optimal control problems: discrete versus continuous Chebyshev polynomials. Asian Journal of Control 21(6), 1–13

    MathSciNet  Google Scholar 

  54. Heydari MH, Avazzadeh Z (2020) Numerical study of non-singular variable-order time fractional coupled Burgers’ equations by using the Hahn polynomials. Eng Comput. doi: 10.1007/s00366-020-01036-5

    Article  Google Scholar 

  55. Hosseininia M, Heydari MH, Hooshmandasl MR, Maalek Ghaini F, M, Avazzadeh Z, (2020) A numerical method based on the Chebyshev cardinal functions for variable- order fractional version of the fourth-order 2D Kuramoto-Sivashinsky equation. Mathematical Methods in the Applied Sciences 44(2):1831–1842

    MathSciNet  MATH  Google Scholar 

  56. Heydari MH, Avazzadeh Z (2020) Chebyshev–Gauss–Lobatto collocation method for variable-order time fractional generalized Hirota-Satsuma coupled KdV system. Eng Comput. https://doi.org/10.1007/s00366-020-01125-5

    Article  Google Scholar 

  57. Mirzaee F, Samadyar N, Hosseini SF (2017) A new scheme for solving nonlinear Stratonovich Volterra integral equations via Bernoullis approximation. Chaos, Solitons and Fractals 96(13):2163–2179

    MathSciNet  MATH  Google Scholar 

  58. Zogheib B, Tohidi E (2016) A new matrix method for solving two-dimensional time-dependent diffusion equations with Dirichlet boundary conditions. Applied Mathematics and Computation 291:1–13

    MathSciNet  MATH  Google Scholar 

  59. Tohidi E, Bhrawy AH, Erfani K (2013) A collocation method based on Bernoulli operational matrix for numerical solution of generalized pantograph equation. Applied Mathematical Modeling 37(6):4283–4294

    MathSciNet  MATH  Google Scholar 

  60. Mirzaee F, Samadyar N (2020) Explicit representation of orthonormal Bernoulli polynomials and its application for solving Volterra-Fredholm-Hammerstein integral equations. SeMA Journal 77:81–96

    MathSciNet  MATH  Google Scholar 

  61. Heydari MH, Avazzadeh NZ (2020) New formulation of the orthonormal Bernoulli polynomials for solving the variable-order time fractional coupled Boussinesq-Burger’s equations. Eng Comput. https://doi.org/10.1007/s00366-020-01007-w

    Article  Google Scholar 

  62. Luke YL (1969) The Special Functions and their Approximations. Academic Press, New York

    MATH  Google Scholar 

  63. Khalil R, Al Horani M, Yousef A, Sababheh M (2014) A new definition of fractional derivative. Journal of Computational and Applied Mathematics 264:65–70

    MathSciNet  MATH  Google Scholar 

  64. Podlubny I (1999) Fractional Differential Equations. Academic Press, San Diego

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Avazzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydari, M.H., Razzaghi, M. & Avazzadeh, Z. Orthonormal Bernoulli polynomials for space–time fractal-fractional modified Benjamin–Bona–Mahony type equations . Engineering with Computers 38, 3483–3496 (2022). https://doi.org/10.1007/s00366-021-01333-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01333-7

Keywords

Navigation