Skip to main content
Log in

Uncertainty quantification of ultimate compressive strength of CCFST columns using hybrid machine learning model

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This study aims to estimate the value and quantify the uncertainty of the compressive strength of circular concrete-filled steel tube (CCFST) columns under eccentric loading using a hybrid machine learning model, namely PANN, which is a combination of particle swarm optimization (PSO) and artificial neural networks (ANNs). A dataset of 241 experiments is collected and used to construct such a hybrid model. The PANN performance is then compared with other data-mining techniques such as, multiple linear regression (MLR) and multiple adaptive regression spline (MARS), and benchmarked against four design codes, including EC4, ACI, AISC, and AIJ. The obtained results in terms of R of 0.995, RMSE of 11.2, and MAPE of 0.154 demonstrate that PANN is the best model serving as an efficient alternative approach to predict the compressive strength of the CCFST column under eccentric loading. The CCFST ultimate strength is also quantified uncertainty with configuration randomness (e.g., geometry, material, and loading configurations) based on Monte Carlo simulation. The simulation findings indicate the column diameter is the most sensitive to the output, the short columns are less sensitive than the long ones, and the sensitivity of CCFST columns towards uncertainty decreases when the eccentricity increasing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Han L-H, Zhou K, Ma D (2018) Concrete-encased CFST structures: behaviour and application. In: 12th international conference on advances in steel-concrete composite structures (ASCCS 2018). Universitat Politècnica de València, València, Spain

  2. Han LH, Li W, Bjorhovde R (2014) Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. J Constr Steel Res 100:211–228

    Article  Google Scholar 

  3. Tao Z, Han LH, Wang DY (2008) Strength and ductility of stiffened thin-walled hollow steel structural stub columns filled with concrete. Thin-Walled Struct 46:1113–1128

    Article  Google Scholar 

  4. Johansson M, Gylltoft K (2002) Mechanical behavior of circular steel-concrete composite stub columns. J Struct Eng 128:1073–1081

    Article  Google Scholar 

  5. American concrete institute (1962) ACI 318. Building code requirements for structural concrete and commentary, USA

    Google Scholar 

  6. EC4 (2004) Eurocode 4: Design of composite steel and concrete structures. Part 1.1, General rules and rules for buildings. EN 1994–1–1:2004. Brussels

  7. AISC. American Institute of Steel Construction (2016) Specification for Structural Steel Buildings, ANSI/AISC 360–16

  8. AIJ (1997) Recommendations for design and construction of concrete filled steel tubular structures. Tokyo

  9. Portolés JM, Serra E, Romero ML (2013) Influence of ultra-high strength infill in slender concrete-filled steel tubular columns. J Constr Steel Res 87:107–114

    Article  Google Scholar 

  10. Xiong M-X, Xiong D-X, Liew JYR (2017) Behaviour of steel tubular members infilled with ultra high strength concrete. J Constr Steel Res 138:168–183

    Article  Google Scholar 

  11. Romero ML, Ibañez C, Espinos A et al (2017) Influence of ultra-high strength concrete on circular concrete-filled dual steel columns. Structures 9:12–20

    Article  Google Scholar 

  12. Bin WZ, Tao Z, Han LH et al (2017) Strength, stiffness and ductility of concrete-filled steel columns under axial compression. Eng Struct 135:209–221. https://doi.org/10.1016/j.engstruct.2016.12.049

    Article  Google Scholar 

  13. Sakino K, Nakahara H, Morino S, Nishiyama I (2004) Behavior of centrally loaded concrete-filled steel-tube short columns. J Struct Eng 130:180–188

    Article  Google Scholar 

  14. Yu A, Chen B (2011) A s. Int J Civ Environ Eng 11:20–39

    Google Scholar 

  15. Ahmadi M, Naderpour H, Kheyroddin A (2014) Utilization of artificial neural networks to prediction of the capacity of CCFT short columns subject to short term axial load. Arch Civ Mech Eng 14:510–517

    Article  Google Scholar 

  16. Khalaf AA, Naser KZ, Kamil F (2018) Predicting the ultimate strength of circular concrete filled steel tubular columns by using artificial neural networks. Int J Civ Eng Technol 9:1724–1736

    Google Scholar 

  17. Ahmadi M, Naderpour H, Kheyroddin A (2017) ANN model for predicting the compressive strength of circular steel-confined concrete. Int J Civ Eng 15:213–221

    Article  Google Scholar 

  18. Moon J, Kim JJ, Lee TH, Lee HE (2014) Prediction of axial load capacity of stub circular concrete-filled steel tube using fuzzy logic. J Constr Steel Res 101:184–191

    Article  Google Scholar 

  19. Güneyisi EM, Gültekin A, Mermerdaş K (2016) Ultimate capacity prediction of axially loaded CFST short columns. Int J Steel Struct 16:99–114

    Article  Google Scholar 

  20. Luat NV, Lee J, Lee DH, Lee K (2020) GS-MARS method for predicting the ultimate load-carrying capacity of rectangular CFST columns under eccentric loading. Comput Concr 25:1–14. https://doi.org/10.12989/cac.2020.25.1.001

    Article  Google Scholar 

  21. Lee Y, Oh S-H, Kim MW (1991) The effect of initial weights on premature saturation in Back-Propagation Learning. IJCNN-91-Seattle International Joint Conference on Neural Networks. IEEE, Korea, pp 765–770

    Chapter  Google Scholar 

  22. M Gori and A Teri (1992) On the problem of local minima in backpropagation. In: IEEE Transactions on Pattern Analysis and Machine Intelligence. pp 76–86

  23. Shapiro AF (2002) The merging of neural networks, fuzzy logic, and genetic algorithms. Insur Math Econ 31:115–131

    Article  MathSciNet  Google Scholar 

  24. Burke EK, Hyde MR, Kendall G et al (2009) Exploring hyper-heuristic methodologies with genetic programming. Intell Syst Ref Libr 1:177–201

    MATH  Google Scholar 

  25. Kuhn M, Johnson K (2013) Applied predictive modeling. Springer

  26. Sarir P, Shen SL, Wang ZF et al (2019) Optimum model for bearing capacity of concrete-steel columns with AI technology via incorporating the algorithms of IWO and ABC. Eng Comput. https://doi.org/10.1007/s00366-019-00855-5

    Article  Google Scholar 

  27. Luat NV, Shin J, Lee K (2020) Hybrid BART-based models optimized by nature-inspired metaheuristics to predict ultimate axial capacity of CCFST columns. Eng Comput. https://doi.org/10.1007/s00366-020-01115-7

    Article  Google Scholar 

  28. Torabian Moghadam F, Sadowski Ł (2015) Prediction of concrete compressive strength by evolutionary artificial neural networks. Adv Mater Sci Eng. https://doi.org/10.1155/2015/849126

    Article  Google Scholar 

  29. Yaseen ZM, Tran MT, Kim S et al (2018) Shear strength prediction of steel fiber reinforced concrete beam using hybrid intelligence models: a new approach. Eng Struct 177:244–255

    Article  Google Scholar 

  30. Asteris PG, Nikoo M (2019) Artificial bee colony-based neural network for the prediction of the fundamental period of infilled frame structures. Neural Comput Appl 31:4837–4847

    Article  Google Scholar 

  31. Sarir P, Chen J, Asteris PG et al (2019) Developing GEP tree-based, neuro-swarm, and whale optimization models for evaluation of bearing capacity of concrete-filled steel tube columns. Eng Comput. https://doi.org/10.1007/s00366-019-00808-y

    Article  Google Scholar 

  32. Stefanou G, Papadrakakis M (2004) Stochastic finite element analysis of shells with combined random material and geometric properties. Comput Methods Appl Mech Eng 193:139–160

    Article  MATH  Google Scholar 

  33. Chang TP (2014) Stochastic dynamic finite element analysis of bridge-vehicle system subjected to random material properties and loadings. Appl Math Comput 242:20–35

    MathSciNet  MATH  Google Scholar 

  34. Xu Y, Qian Y, Chen J, Song G (2015) Stochastic dynamic characteristics of FGM beams with random material properties. Compos Struct 133:585–594

    Article  Google Scholar 

  35. Zhou Y, Zhang X (2019) Natural frequency analysis of functionally graded material beams with axially varying stochastic properties. Appl Math Model 67:85–100

    Article  MathSciNet  MATH  Google Scholar 

  36. Trinh MC, Mukhopadhyay T, Kim SE (2020) A semi-analytical stochastic buckling quantification of porous functionally graded plates. Elsevier Masson SAS

  37. Knowles RB, Park R (1969) Strength of concrete filled steel columns. J Struct Div 95:2565–2587

    Article  Google Scholar 

  38. Neogi PK, Sen HK, Chapman JC (1969) Concrete-filled tubular steel columns under eccentric loading. Struct Eng 95:2565–2587

    Google Scholar 

  39. Cai S-H (1991) Influence of Moment Distribution Diagram on Load-Carrying Capacity of Concrete-Filled Steel Tubular Columns. In: Wakabayashi M (ed) Proceedings of the Third International Conference on Steel-Concrete Composite structures. Association for International Cooperation and Research in Steel-Concrete Composite Structures, Fukuoka, Japan, pp 113–118

  40. Rangan BV, Joyce M (1992) Strength of eccentrically loaded slender steel tubular columns filled with high-strength concrete. ACI Struct J 89:676–681

    Google Scholar 

  41. Matsui C, Tsuda K (1996) Strength And Behavior Of Slender Concrete Filled Steel Tubular Columns. In: P. T. Y. Chang, Lu LW, L. Wei (eds) Proceedings of The Second International Symposium on Civil Infrastructure Systems. Hong Kong, China

  42. O’Shea MD (1998) Bridge R (1997) tests on circular thin-walled steel tubes filled with very high strength concrete. Sydney 40:15

    Google Scholar 

  43. Kilpatrick AE, Rangan BV (1999) Tests on high-strength concrete-filled steel tubular columns. ACI Struct J 96:268–274

    Google Scholar 

  44. Johansson M, Claeson C, Gylltoft K, Akesson M (2000) Structural behavior of circular composite columns under various means of load application. In: Proceedings of the Sixth ASCCS International Conference on Steel-Concrete Composite Structures. Los Angeles, California, pp 427–434

  45. O’Shea MD, Bridge RQ (2000) Design of circular thin-walled concrete filled steel tubes. J Struct Eng 126:1295–1303

    Article  Google Scholar 

  46. Gopal SR, Manoharan PD (2003) Structural behavior of slender steel tubular columns infilled with fibre reinforced concrete. In: Proceedings ASSCCA’03 International Conference Advances in Structures (ASCCS-7). Sydney, Australia, pp 871–875

  47. Han LH, Yao GH (2003) Behaviour of concrete-filled hollow structural steel (HSS) columns with pre-load on the steel tubes. J Constr Steel Res 59:1455–1475

    Article  Google Scholar 

  48. Han LH, Yao GH (2004) Experimental behaviour of thin-walled hollow structural steel (HSS) columns filled with self-consolidating concrete (SCC). Thin-Walled Struct 42:1357–1377

    Article  Google Scholar 

  49. Yu Q, Tao Z, Wu YX (2008) Experimental behaviour of high performance concrete-filled steel tubular columns. Thin-Walled Struct 46:362–370

    Article  Google Scholar 

  50. Lee SH, Uy B, Kim SH et al (2011) Behavior of high-strength circular concrete-filled steel tubular (CFST) column under eccentric loading. J Constr Steel Res 67:1–13

    Article  Google Scholar 

  51. Muciaccia G, Giussani F, Rosati G, Mola F (2011) Response of self-compacting concrete filled tubes under eccentric compression. J Constr Steel Res 67:904–916

    Article  Google Scholar 

  52. Portolés JM, Romero ML, Bonet JL, Filippou FC (2011) Experimental study of high strength concrete-filled circular tubular columns under eccentric loading. J Constr Steel Res 67:623–633

    Article  Google Scholar 

  53. Portolés JM, Serra E, Romero ML (2013) Influence of ultra-high strength infill in slender concrete-filled steel tubular columns. J Constr Steel Res 86:107–114

    Article  Google Scholar 

  54. Romero ML, Ibañez C, Espinos A et al (2017) Influence of ultra-high strength concrete on circular concrete-filled dual steel columns. Structures 9:13–20

    Article  Google Scholar 

  55. Tsuda K, Matsui C, Mino E Strength and behavior of slender concrete filled steel tubular columns. In: Proceedings 5th International Colloquium on Structural Stability. Rio de Janeiro, Brazil, pp 489–500

  56. Tavakkol S, Alapour F, Kazemian A et al (2013) Prediction of lightweight concrete strength by categorized regression, MLR and ANN. Comput Concr 12:151–167

    Article  Google Scholar 

  57. Chou JS, Tsai CF (2012) Concrete compressive strength analysis using a combined classification and regression technique. Autom Constr 24:52–60

    Article  Google Scholar 

  58. Lee SI, Lee J, Hwang B (2019) Microstructure-based prediction of yield ratio and uniform elongation in high-strength bainitic steels using multiple linear regression analysis. Mater Sci Eng A 758:56–59

    Article  Google Scholar 

  59. Martinez P, Mohamed E, Mohsen O, Mohamed Y (2020) Comparative study of data mining models for prediction of bridge future conditions. J Perform Constr Facil 34:1–9

    Article  Google Scholar 

  60. da Chagas CS, de Junior Carvalho W, Bhering SB, Calderano Filho B (2016) Spatial prediction of soil surface texture in a semiarid region using random forest and multiple linear regressions. CATENA 139:232–240

    Article  Google Scholar 

  61. Friedman JH (1991) Multivariate daptive regression splines. Ann Stat 19:1–141

    Google Scholar 

  62. Mansouri I, Ozbakkaloglu T, Kisi O, Xie T (2016) Predicting behavior of FRP-confined concrete using neuro fuzzy, neural network, multivariate adaptive regression splines and M5 model tree techniques. Mater Struct Constr 49:4319–4334

    Article  Google Scholar 

  63. Cheng MY, Cao MT (2014) Evolutionary multivariate adaptive regression splines for estimating shear strength in reinforced-concrete deep beams. Eng Appl Artif Intell 28:86–96

    Article  Google Scholar 

  64. Cheng MY, Cao MT (2016) Estimating strength of rubberized concrete using evolutionary multivariate adaptive regression splines. J Civ Eng Manag 22:711–720

    Article  Google Scholar 

  65. Kaveh A, Hamze-Ziabari SM, Bakhshpoori T (2018) Estimating drying shrinkage of concrete using a multivariate adaptive regression splines approach. Int J Optim Civ Eng Int J Optim Civ Eng 8:181–194

    Google Scholar 

  66. Perera R, Barchín M, Arteaga A, De DA (2010) Prediction of the ultimate strength of reinforced concrete beams FRP-strengthened in shear using neural networks. Compos Part B Eng 41:287–298

    Article  Google Scholar 

  67. Cai B, Xu LF, Fu F (2019) Shear resistance prediction of post-fire reinforced concrete beams using artificial neural network. Int J Concr Struct Mater 13:1–13

    Article  Google Scholar 

  68. Park JY, Yoon YG, Oh TK (2019) Prediction of concrete strength with P-, S-, R-wave velocities by support vector machine (SVM) and artificial neural network (ANN). Appl Sci 9:4053

    Article  Google Scholar 

  69. Kennedy J, Eberhart R (1995) Particle swarm optimization. Proc IEEE Int Conf Neural Networks 11:1942–1948

    Article  Google Scholar 

  70. Schmitt M, Wanka R (2015) Particle swarm optimization almost surely finds local optima. Theor Comput Sci 561:57–72

    Article  MathSciNet  MATH  Google Scholar 

  71. Le LT, Nguyen H, Dou J, Zhou J (2019) A comparative study of PSO-ANN, GA-ANN, ICA-ANN, and ABC-ANN in estimating the heating load of buildings’ energy efficiency for smart city planning. Appl Sci 9:2630

    Article  Google Scholar 

  72. Hu C, Li K, Liu G, Pan L (2015) Forecasting building energy consumption based on hybrid PSO-ANN prediction model. Chinese Control Conf CCC 2015-Septe: 8243–8247

  73. Ebrahimzade H, Khayati GR, Schaffie M (2020) PSO–ANN-based prediction of cobalt leaching rate from waste lithium-ion batteries. J Mater Cycles Waste Manag 22:228–239

    Article  Google Scholar 

  74. Altun F, Kişi Ö, Aydin K (2008) Predicting the compressive strength of steel fiber added lightweight concrete using neural network. Comput Mater Sci 42:259–265

    Article  Google Scholar 

  75. Naderpour H, Rafiean AH, Fakharian P (2018) Compressive strength prediction of environmentally friendly concrete using artificial neural networks. J Build Eng 16:213–219. https://doi.org/10.1016/j.jobe.2018.01.007

    Article  Google Scholar 

  76. Onyari EK, Ikotun BD (2018) Prediction of compressive and flexural strengths of a modified zeolite additive mortar using artificial neural network. Constr Build Mater 187:1232–1241. https://doi.org/10.1016/j.conbuildmat.2018.08.079

    Article  Google Scholar 

  77. Keshtegar B, Bagheri M, Yaseen ZM (2019) Shear strength of steel fiber-unconfined reinforced concrete beam simulation: Application of novel intelligent model. Compos Struct 212:230–242. https://doi.org/10.1016/j.compstruct.2019.01.004

    Article  Google Scholar 

  78. Hwang H-J, Baek J-W, Jae-Yo Kim C-SK (2019) Prediction of bond performance of tension lap splices using artificial neural networks. Eng Struct 198:109535

    Article  Google Scholar 

  79. Nguyen MST, Thai DK, Kim SE (2020) Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network. Steel Compos Struct 35:415–437

    Google Scholar 

  80. Ceryan N, Okkan U, Kesimal A (2013) Prediction of unconfined compressive strength of carbonate rocks using artificial neural networks. Environ Earth Sci 68:807–819

    Article  Google Scholar 

  81. Eberhart RC, Shi Y (2001) Particle swarm optimization: developments, applications and resources russell. 81–86

  82. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization an overview. Swarm Intell 1:33–57

    Article  Google Scholar 

  83. Lyon A (2014) (2014) Why are normal distributions normal? Br J Philosop Sci. 65:621–649

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported bythe National Research Foundation of Korea (NRF) funded by the Korean government (MSIT) (No. 2018R1A2A2A05018524 and No. 2019R1A4A1021702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Eock Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, MS.T., Trinh, MC. & Kim, SE. Uncertainty quantification of ultimate compressive strength of CCFST columns using hybrid machine learning model. Engineering with Computers 38 (Suppl 4), 2719–2738 (2022). https://doi.org/10.1007/s00366-021-01339-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01339-1

Keywords

Navigation