Skip to main content

Advertisement

Log in

An effective solution to numerical and multi-disciplinary design optimization problems using chaotic slime mold algorithm

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

A Correction to this article was published on 27 July 2021

This article has been updated

Abstract

Slime mold algorithm (SMA) is a recently developed meta-heuristic algorithm that mimics the ability of a single-cell organism (slime mold) for finding the shortest paths between food centers to search or explore a better solution. It is noticed that entrapment in local minima is the most common problem of these meta-heuristic algorithms. Thus, to further enhance the exploitation phase of SMA, this paper introduces a novel chaotic algorithm in which sinusoidal chaotic function has been combined with the basic SMA. The resultant chaotic slime mold algorithm (CSMA) is applied to 23 extensively used standard test functions and 10 multidisciplinary design problems. To check the validity of the proposed algorithm, results of CSMA has been compared with other recently developed and well-known classical optimizers such as PSO, DE, SSA, MVO, GWO, DE, MFO, SCA, CS, TSA, PSO-DE, GA, HS, Ray and Sain, MBA, ACO, and MMA. Statistical results suggest that chaotic strategy facilitates SMA to provide better performance in terms of solution accuracy. The simulation result shows that the developed chaotic algorithm outperforms on almost all benchmark functions and multidisciplinary engineering design problems with superior convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Change history

References

  1. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  2. Koza JR, Poli R (2005) Genetic programming. Search methodologies. Springer, Boston, MA, pp 127–164

    Chapter  Google Scholar 

  3. Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13:398–417. https://doi.org/10.1109/TEVC.2008.927706

    Article  Google Scholar 

  4. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232

    Article  MATH  Google Scholar 

  5. Kaveh Ali (2014) Advances in metaheuristic algorithms for optimal design of structures. Springer International Publishing, Switzerland

    Book  MATH  Google Scholar 

  6. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27:495–513. https://doi.org/10.1007/s00521-015-1870-7

    Article  Google Scholar 

  7. Moghdani R, Salimifard K (2018) Volleyball premier league algorithm. Appl Soft Comput J 64:161–185. https://doi.org/10.1016/j.asoc.2017.11.043

    Article  Google Scholar 

  8. Glover F (1989) Tabu search—part I.ORSA. J Comput 1(3):190–206

    MATH  Google Scholar 

  9. Satapathy SC, Naik A, Parvathi K (2013) A teaching learning based optimization based on orthogonal design for solving global optimization problems. Springerplus 2:1–12. https://doi.org/10.1186/2193-1801-2-130

    Article  Google Scholar 

  10. Eberhart R, Kennedy J (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, vol. 4

  11. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1:28–39. https://doi.org/10.1109/MCI.2006.329691

    Article  Google Scholar 

  12. Brajevic I, Tuba M (2013) An upgraded artificial bee colony (ABC) algorithm for constrained optimization problems. J Intell Manuf 24:729–740. https://doi.org/10.1007/s10845-011-0621-6

    Article  Google Scholar 

  13. Verma C, Stoffova V, Illes Z, Tanwar S, Kumar N (2020) Machine learning-based student’s native place identification for real-time. IEEE Access 8:130840–130854. https://doi.org/10.1109/ACCESS.2020.3008830

    Article  Google Scholar 

  14. Yang XS (2011) Bat algorithm for multi-objective optimisation. Int J Bioinspired Comput 3:267–274. https://doi.org/10.1504/IJBIC.2011.042259

    Article  Google Scholar 

  15. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  16. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249. https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  17. Verma C, Stoffová V, Illés Z (2019) Prediction of students’ awareness level towards ICT and mobile technology in Indian and Hungarian University for the real-time: preliminary results. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e01806

    Article  Google Scholar 

  18. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Gener Comput Syst. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  19. Verma C, Stoffová V, Illés Z (2018) An Ensemble approach to identifying the student gender towards information and communication technology awareness in European schools using machine learning. Int J Eng Technol 7:3392–3396. https://doi.org/10.14419/ijet.v7i4.14045

    Article  Google Scholar 

  20. Fleszar K, Osman IH, Hindi KS (2009) A variable neighbourhood search algorithm for the open vehicle routing problem. Eur J Oper Res 195:803–809. https://doi.org/10.1016/j.ejor.2007.06.064

    Article  MATH  Google Scholar 

  21. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12:702–713

    Article  Google Scholar 

  22. Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. In: International conference in swarm intelligence. Springer, Berlin, Heidelberg

  23. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17:4831–4845. https://doi.org/10.1016/j.cnsns.2012.05.010

    Article  MathSciNet  MATH  Google Scholar 

  24. Martí R, Resende MGC, Ribeiro CC (2013) Multi-start methods for combinatorial optimization. Eur J Oper Res 226:1–8. https://doi.org/10.1016/j.ejor.2012.10.012

    Article  MathSciNet  MATH  Google Scholar 

  25. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110–111:151–166. https://doi.org/10.1016/j.compstruc.2012.07.010

    Article  Google Scholar 

  26. Li X, Zhang J, Yin M (2014) Animal migration optimization: An optimization algorithm inspired by animal migration behavior. Neural Comput Appl 24:1867–1877. https://doi.org/10.1007/s00521-013-1433-8

    Article  Google Scholar 

  27. Kuo HC, Lin CH (2013) Cultural evolution algorithm for global optimizations and its applications. J Appl Res Technol 11:510–522. https://doi.org/10.1016/S1665-6423(13)71558-X

    Article  Google Scholar 

  28. Cheng MY, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112. https://doi.org/10.1016/j.compstruc.2014.03.007

    Article  Google Scholar 

  29. Gandomi AH (2014) Interior search algorithm (ISA): a novel approach for global optimization. ISA Trans 53:1168–1183. https://doi.org/10.1016/j.isatra.2014.03.018

    Article  Google Scholar 

  30. Mirjalili S, Wang GG, Coelho LS (2014) Binary optimization using hybrid particle swarm optimization and gravitational search algorithm. Neural Comput Appl 25:1423–1435. https://doi.org/10.1007/s00521-014-1629-6

    Article  Google Scholar 

  31. Mohseni S, et al. (2014) Competition over resources: a new optimization algorithm based on animals behavioral ecology. In: 2014 International Conference on Intelligent Networking and Collaborative Systems. IEEE

  32. Wang GG, Guo L, Gandomi AH, Hao GS, Wang H (2014) Chaotic Krill Herd algorithm. Inf Sci (Ny) 274:17–34. https://doi.org/10.1016/j.ins.2014.02.123

    Article  MathSciNet  Google Scholar 

  33. Salimi H (2015) Stochastic fractal search: a powerful metaheuristic algorithm. Knowl Based Syst 75:1–18. https://doi.org/10.1016/j.knosys.2014.07.025

    Article  Google Scholar 

  34. Ghorbani N, Babaei E (2014) Exchange market algorithm. Appl Soft Comput J 19:177–187. https://doi.org/10.1016/j.asoc.2014.02.006

    Article  Google Scholar 

  35. Ghaemi M, Feizi-Derakhshi MR (2014) Forest optimization algorithm. Expert Syst Appl 41:6676–6687. https://doi.org/10.1016/j.eswa.2014.05.009

    Article  Google Scholar 

  36. Gray B, Optimization W (2015) Author’s accepted manuscript binary gray wolf optimization approaches for feature selection. Neurocomputing. https://doi.org/10.1016/j.neucom.2015.06.083

    Article  Google Scholar 

  37. Meng XB, Gao XZ, Lu L, Liu Y, Zhang H (2016) A new bio-inspired optimisation algorithm: Bird Swarm Algorithm. J Exp Theor Artif Intell 28:673–687. https://doi.org/10.1080/0952813X.2015.1042530

    Article  Google Scholar 

  38. Wang GG, Suash D, Coelho LDS (2015) Elephant herding optimization. In: 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI). IEEE

  39. Abedinpourshotorban H, Mariyam Shamsuddin S, Beheshti Z, Jawawi DNA (2016) Electromagnetic field optimization: a physics-inspired metaheuristic optimization algorithm. Swarm Evol Comput 26:8–22. https://doi.org/10.1016/j.swevo.2015.07.002

    Article  Google Scholar 

  40. Shahriar MS, Rana J, Asif MA, Hasan M, Hawlader M (2015) Optimization of Unit Commitment Problem for wind-thermal generation using Fuzzy optimization technique. In: 2015 International conference on advances in electrical engineering (ICAEE), pp. 88–92. IEEE

  41. Shareef H, Ibrahim AA, Mutlag AH (2015) Lightning search algorithm. Appl Soft Comput J 36:315–333. https://doi.org/10.1016/j.asoc.2015.07.028

    Article  Google Scholar 

  42. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004

    Article  Google Scholar 

  43. Singh N, Singh SB (2017) A novel hybrid GWO-SCA approach for optimization problems. Eng Sci Technol Int J 20:1586–1601. https://doi.org/10.1016/j.jestch.2017.11.001

    Article  Google Scholar 

  44. Gohil NB, Dwivedi VV (2017) A review on lion optimization. Nat Inspired Evol Algorithm 7:340–352

    Google Scholar 

  45. Reddy SK, Panwar L, Panigrahi BK, Kumar R (2018) Binary whale optimization algorithm: a new metaheuristic approach for profit-based unit commitment problems in competitive electricity markets. Eng Optim. https://doi.org/10.1080/0305215X.2018.1463527

    Article  Google Scholar 

  46. Pierezan J, Coelho LDS (2018) Coyote optimization algorithm: a new metaheuristic for global optimization problems. In: 2018 IEEE congress on evolutionary computation (CEC). IEEE

  47. Chen X, Tianfield H, Li K (2019) BASE DATA. Swarm Evol Comput. https://doi.org/10.1016/j.swevo.2019.01.003

    Article  Google Scholar 

  48. Shadravan S, Naji HR, Bardsiri VK (2019) The Sailfish Optimizer: a novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Eng Appl Artif Intell 80:20–34. https://doi.org/10.1016/j.engappai.2019.01.001

    Article  Google Scholar 

  49. Verma C, Illes Z, Stoffova V (2019) Age group predictive models for the real time prediction of the university students using machine learning: Preliminary results. In: 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT). IEEE

  50. Adamatzky A (2012) Slime mold solves maze in one pass, assisted by gradient of chemo-attractants. IEEE Trans Nanobiosci 11:131–134. https://doi.org/10.1109/TNB.2011.2181978

    Article  Google Scholar 

  51. Nakagaki T, Kobayashi R, Nishiura Y, Ueda T (2004) Obtaining multiple separate food sources: behavioural intelligence in the Physarum plasmodium. Proc R Soc B Biol Sci 271:2305–2310. https://doi.org/10.1098/rspb.2004.2856

    Article  Google Scholar 

  52. Adamatzky A, Jones J (2010) Road planning with slime mould: if Physarum built motorways it would route M6/M74 through Newcastle. Int J Bifurc Chaos 20:3065–3084. https://doi.org/10.1142/S0218127410027568

    Article  MathSciNet  Google Scholar 

  53. Beekman M, Latty T (2015) Brainless but multi-headed: decision making by the acellular slime mould Physarum polycephalum. J Mol Biol 427:3734–3743. https://doi.org/10.1016/j.jmb.2015.07.007

    Article  Google Scholar 

  54. Burgin M, Adamatzky A (2017) Structural machines and slime mould computation. Int J Gen Syst 46:201–224. https://doi.org/10.1080/03081079.2017.1300585

    Article  MathSciNet  Google Scholar 

  55. Cuevas E, González M, Zaldivar D, Pérez-Cisneros M, García G (2012) An algorithm for global optimization inspired by collective animal behavior. Discret Dyn Nat Soc. https://doi.org/10.1155/2012/638275

    Article  MathSciNet  Google Scholar 

  56. Houbraken M, Demeyer S, Staessens D, Audenaert P, Colle D, Pickavet M (2013) Fault tolerant network design inspired by Physarum polycephalum. Nat Comput 12:277–289. https://doi.org/10.1007/s11047-012-9344-7

    Article  MathSciNet  Google Scholar 

  57. Kropat E, Meyer-Nieberg S (2014) Slime mold inspired evolving networks under uncertainty (SLIMO). In: 2014 47th Hawaii International Conference on System Sciences (HICSS), pp. 1153–1161. IEEE Computer Society

  58. Abdel-basset M, Chang V, Mohamed R (2020) HSMA_WOA: A hybrid novel Slime mould algorithm with whale optimization algorithm fortackling the image segmentation problem of chest X-ray images. Applied Soft Computing 95:

    Article  Google Scholar 

  59. Zhao J, Gao ZM, Sun W (2020) The improved slime mould algorithm with Levy flight. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1617/1/012033

    Article  Google Scholar 

  60. Patino-Ramirez F, Boussard A, Arson C, Dussutour A (2019) Substrate composition directs slime molds behavior. Sci Rep 9:1–14. https://doi.org/10.1038/s41598-019-50872-z

    Article  Google Scholar 

  61. Kouadri R, Slimani L, Bouktir T (2020) Slime mould algorithm for practical optimal power flow solutions incorporating stochastic wind power and static var compensator device. Electr Eng Electromech. https://doi.org/10.20998/2074-272x.2020.6.07

    Article  Google Scholar 

  62. Gao ZM, Zhao J, Yang Y, Tian XJ (2020) The hybrid grey wolf optimization-slime mould algorithm. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1617/1/012034

    Article  Google Scholar 

  63. Nguyen TT, Wang HJ, Dao TK, Pan JS, Liu JH, Weng S (2020) An improved slime mold algorithm and its application for optimal operation of cascade hydropower stations. IEEE Access 8:226754–226772. https://doi.org/10.1109/ACCESS.2020.3045975

    Article  Google Scholar 

  64. İzci D, Ekinci S (2021) Comparative performance analysis of slime mould algorithm for efficient design of proportional–integral–derivative controller. Electrica 21:151–159. https://doi.org/10.5152/ELECTRICA.2021.20077

    Article  Google Scholar 

  65. Li S, Chen H, Wang M, Heidari AA, Mirjalili S (2020) Slime mould algorithm: a new method for stochastic optimization. Futur Gener Comput Syst. https://doi.org/10.1016/j.future.2020.03.055

    Article  Google Scholar 

  66. Ji Y, Tu J, Zhou H, Gui W, Liang G, Chen H, Wang M (2020) An adaptive chaotic sine cosine algorithm for constrained and unconstrained optimization. Complexity. https://doi.org/10.1155/2020/6084917

    Article  Google Scholar 

  67. Paul C, Roy PK, Mukherjee V (2020) Chaotic whale optimization algorithm for optimal solution of combined heat and power economic dispatch problem incorporating wind. Renew Energy Focus. https://doi.org/10.1016/j.ref.2020.06.008

    Article  Google Scholar 

  68. Chuang LY, Hsiao CJ, Yang CH (2011) Chaotic particle swarm optimization for data clustering. Expert Syst Appl 38:14555–14563. https://doi.org/10.1016/j.eswa.2011.05.027

    Article  Google Scholar 

  69. Mane SU, Narsingrao MR (2021) A chaotic-based improved many-objective jaya algorithm for many-objective optimization problems. Int J Ind Eng Comput 12:49–62. https://doi.org/10.5267/j.ijiec.2020.10.001

    Article  Google Scholar 

  70. Dong N, Fang X, Wu AG (2016) A novel chaotic particle swarm optimization algorithm for parking space guidance. Math Probl Eng. https://doi.org/10.1155/2016/5126808

    Article  MathSciNet  MATH  Google Scholar 

  71. Kohli M, Arora S (2018) Chaotic grey wolf optimization algorithm for constrained optimization problems. J Comput Des Eng 5:458–472. https://doi.org/10.1016/j.jcde.2017.02.005

    Article  Google Scholar 

  72. Chen Z, Liu W (2020) An efficient parameter adaptive support vector regression using K-Means clustering and chaotic slime mould algorithm. IEEE Access 8:156851–156862. https://doi.org/10.1109/ACCESS.2020.3018866

    Article  Google Scholar 

  73. Premkumar M, Jangir P, Sowmya R, Alhelou HH, Heidari AA, Chen H (2021) MOSMA: multi-objective slime mould algorithm based on elitist non-dominated sorting. IEEE Access 9:3229–3248. https://doi.org/10.1109/ACCESS.2020.3047936

    Article  Google Scholar 

  74. Zhao J, Gao ZM (2020) The chaotic slime mould algorithm with Chebyshev. Map J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1631/1/012071

    Article  Google Scholar 

  75. Majhi SK, Mishra A, Pradhan R (2019) A chaotic salp swarm algorithm based on quadratic integrate and fire neural model for function optimization. Prog Artif Intell 8:343–358. https://doi.org/10.1007/s13748-019-00184-0

    Article  Google Scholar 

  76. Li Y, Han M, Guo Q (2020) Modified whale optimization algorithm based on tent chaotic mapping and its application in structural optimization. KSCE J Civ Eng 24:3703–3713. https://doi.org/10.1007/s12205-020-0504-5

    Article  Google Scholar 

  77. Zhu T, Zheng H, Ma Z (2019) A chaotic particle swarm optimization algorithm for solving optimal power system problem of electric vehicle. Adv Mech Eng 11:1–9. https://doi.org/10.1177/1687814019833500

    Article  Google Scholar 

  78. Rezaie H, Kazemi-Rahbar MH, Vahidi B, Rastegar H (2019) Solution of combined economic and emission dispatch problem using a novel chaotic improved harmony search algorithm. J Comput Des Eng 6:447–467. https://doi.org/10.1016/j.jcde.2018.08.001

    Article  Google Scholar 

  79. Hichem H, Elkamel M, Rafik M, Mesaaoud MT, Ouahiba C (2019) A new binary grasshopper optimization algorithm for feature selection problem. J King Saud Univ Comput Inf Sci. https://doi.org/10.1016/j.jksuci.2019.11.007

    Article  Google Scholar 

  80. Sayed GI, Tharwat A, Hassanien AE (2019) Chaotic dragonfly algorithm: an improved metaheuristic algorithm for feature selection. Appl Intell 49:188–205. https://doi.org/10.1007/s10489-018-1261-8

    Article  Google Scholar 

  81. Qiao W, Yang Z (2019) Modified dolphin swarm algorithm based on chaotic maps for solving high-dimensional function optimization problems. IEEE Access 7:110472–110486. https://doi.org/10.1109/ACCESS.2019.2931910

    Article  Google Scholar 

  82. Fuertes G, Vargas M, Alfaro M, Soto-Garrido R, Sabattin J, Peralta MA (2019) Chaotic genetic algorithm and the effects of entropy in performance optimization. Chaos. https://doi.org/10.1063/1.5048299

    Article  MathSciNet  Google Scholar 

  83. Kaur G, Arora S (2018) Chaotic whale optimization algorithm. J Comput Des Eng 5:275–284. https://doi.org/10.1016/j.jcde.2017.12.006

    Article  Google Scholar 

  84. Saxena A, Shekhawat S, Kumar R (2018) Application and development of enhanced chaotic grasshopper optimization algorithms. Model Simul Eng. https://doi.org/10.1155/2018/4945157

    Article  Google Scholar 

  85. Nie X, Wang W, Nie H (2017) Chaos quantum-behaved cat swarm optimization algorithm and its application in the PV MPPT. Comput Intell Neurosci. https://doi.org/10.1155/2017/1583847

    Article  Google Scholar 

  86. Ye F, Lou XY, Sun LF (2017) An improved chaotic fruit fly optimization based on a mutation strategy for simultaneous feature selection and parameter optimization for SVM and its applications. PLoS ONE. https://doi.org/10.1371/journal.pone.0173516

    Article  Google Scholar 

  87. Xu X, Rong H, Trovati M, Liptrott M, Bessis N (2018) CS-PSO: chaotic particle swarm optimization algorithm for solving combinatorial optimization problems. Soft Comput 22:783–795. https://doi.org/10.1007/s00500-016-2383-8

    Article  Google Scholar 

  88. Ge F, Hong L, Wu Q, Shi L (2015) A cooperative optimization algorithm inspired by chaos-order transition. Math Probl Eng. https://doi.org/10.1155/2015/984047

    Article  MathSciNet  MATH  Google Scholar 

  89. Zhang Y, Ji G, Dong Z, Wang S, Phillips P (2015) Comment on “an investigation into the performance of particle swarm optimization with various chaotic Maps.” Math Probl Eng 2015:11–14. https://doi.org/10.1155/2015/815370

    Article  MathSciNet  MATH  Google Scholar 

  90. Ghasemi M, Ghavidel S, Akbari E, Vahed AA (2014) Solving non-linear, non-smooth and non-convex optimal power flow problems using chaotic invasive weed optimization algorithms based on chaos. Energy 73:340–353. https://doi.org/10.1016/j.energy.2014.06.026

    Article  Google Scholar 

  91. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3:82

    Article  Google Scholar 

  92. Digalakis JG, Margaritis KG (2007) On benchmarking functions for genetic algorithms. Int J Comput Math 77:481–506. https://doi.org/10.1080/00207160108805080

    Article  MathSciNet  MATH  Google Scholar 

  93. Wang J, Wang D (2008) Particle swarm optimization with a leader and followers. Prog Nat Sci 18:1437–1443. https://doi.org/10.1016/j.pnsc.2008.03.029

    Article  Google Scholar 

  94. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci (Ny) 179:2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  95. Xie J, Zhou YQ, Chen H (2013) A bat algorithm based on Lévy flights trajectory. Moshi Shibie Yu Rengong Zhineng Pattern Recognit Artif Intell 26:829–837

    Google Scholar 

  96. Yang XS (2010) Firefly algorithm. Eng Optim 221

  97. Kazarlis SA (1996) A genetic algorithm solution to the unit commitment problem. IEEE Trans Power Syst 11:83–92

    Article  Google Scholar 

  98. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27:1053–1073. https://doi.org/10.1007/s00521-015-1920-1

    Article  Google Scholar 

  99. Nezamabadi-pour H, Rostami-sharbabaki M, Maghfoori-Farsangi M (2008) Binary particle swarm optimization: challenges andnew solutions. CSI J Comput Sci Eng 6:21–32

    Google Scholar 

  100. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2010) BGSA: binary gravitational search algorithm. Nat Comput 9:727–745. https://doi.org/10.1007/s11047-009-9175-3

    Article  MathSciNet  MATH  Google Scholar 

  101. Cuevas E, Echavarría A, Ramírez-Ortegón MA (2014) An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation. Appl Intell 40:256–272. https://doi.org/10.1007/s10489-013-0458-0

    Article  Google Scholar 

  102. Ang X-S, Karamanoglu M, He X (2014) Flower pollination algorithm: a novel approach for multiobjective optimization. Eng Optim 46:12

    MathSciNet  Google Scholar 

  103. Jagodziński D, Jarosław A (2017) A differential evolution strategy. In: 2017 IEEE Congress on Evolutionary Computation (CEC). IEEE

  104. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98. https://doi.org/10.1016/j.advengsoft.2015.01.010

    Article  Google Scholar 

  105. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  106. Jafari S, Bozorg-Haddad O, Chu X (2018) Cuckoo optimization algorithm (COA). Stud Comput Intell 720:39–49. https://doi.org/10.1007/978-981-10-5221-7_5

    Article  Google Scholar 

  107. Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. IEEE Int Conf Syst Man Cybern Comput Cybern Simul 5:4104–4108. https://doi.org/10.1109/ICSMC.1997.637339

    Article  Google Scholar 

  108. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  109. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  110. John H (1992) Holland, adaptation in natural and artificial systems. MIT Press, Cambridge

    Google Scholar 

  111. Chopard B, Tomassini M (2018) Particle swarm optimization. Nat Comput Ser. https://doi.org/10.1007/978-3-319-93073-2_6

    Article  MATH  Google Scholar 

  112. Kamboj VK, Nandi A, Bhadoria A, Sehgal S (2020) An intensify Harris Hawks optimizer for numerical and engineering optimization problems. Appl Soft Comput J 89:106018. https://doi.org/10.1016/j.asoc.2019.106018

    Article  Google Scholar 

  113. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput J 13:2592–2612. https://doi.org/10.1016/j.asoc.2012.11.026

    Article  Google Scholar 

  114. Bhadoria A, Kamboj VK (2018) Optimal generation scheduling and dispatch of thermal generating units considering impact of wind penetration using hGWO-RES algorithm. Appl Intell. https://doi.org/10.1007/s10489-018-1325-9

    Article  Google Scholar 

  115. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Gener Comput Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  116. Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29:17–35. https://doi.org/10.1007/s00366-011-0241-y

    Article  Google Scholar 

  117. Ray T, Saini P (2001) Engineering design optimization using a swarm with an intelligent information sharing among individuals. Eng Optim 33:735–748. https://doi.org/10.1080/03052150108940941

    Article  Google Scholar 

  118. Tsai JFA (2005) Global optimization of nonlinear fractional programming problems in engineering design. Eng Optim 37:399–409. https://doi.org/10.1080/03052150500066737

    Article  MathSciNet  Google Scholar 

  119. Hameed IA, Bye RT, Osen OL (2016) Grey wolf optimizer (GWO) for automated offshore crane design. In: 2016 IEEE symposium series on computational intelligence (SSCI). IEEE

  120. Ariables V (2015) The butterfly particle swarm optimization (butterfly PSO/BF-PSO) technique and its variables. Int J Soft Comput Math Control (IJSCMC) 4:23–39

    Article  Google Scholar 

  121. Cagnina LC, Esquivel SC, Nacional U, Luis DS, Luis S, Coello CAC (2008) Solving engineering optimization problems with the simple constrained particle swarm optimizer. Informatica 32:319–326

    Google Scholar 

  122. Deb K (1996) A combined genetic adaptive search (GeneAS) for engineering design. Comput Sci Inform 26:30–45

    Google Scholar 

  123. Wang L, Li LP (2010) An effective differential evolution with level comparison for constrained engineering design. Struct Multidisciplinary Optimization 41(6):947–963

    Article  Google Scholar 

  124. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Soft 95:51–67

    Article  Google Scholar 

  125. Kamboj VK et al (2020) An intensify Harris Hawks optimizer for numerical and engineering optimization problems. Appl SoftComput 89:106018

    Google Scholar 

  126. He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng Appl Artif Intell 20:89–99. https://doi.org/10.1016/j.engappai.2006.03.003

    Article  Google Scholar 

  127. Mezura-Montes E, Coello Coello CA (2005) A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Trans Evol Comput 9:1–17. https://doi.org/10.1109/TEVC.2004.836819

    Article  MATH  Google Scholar 

  128. Deb K (1990) Optimal design of a class of welded structures via genetic algorithms. In: 31st Structures, Structural Dynamics and Materials Conference, p. 1179.

  129. Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188:1567–1579. https://doi.org/10.1016/j.amc.2006.11.033

    Article  MathSciNet  MATH  Google Scholar 

  130. Wu G, Pedrycz W, Suganthan PN, Mallipeddi R (2015) A variable reduction strategy for evolutionary algorithms handling equality constraints. Appl Soft Comput J 37:774–786. https://doi.org/10.1016/j.asoc.2015.09.007

    Article  Google Scholar 

  131. Coello Coello CA (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41:113–127. https://doi.org/10.1016/S0166-3615(99)00046-9

    Article  MATH  Google Scholar 

  132. Lee KS, Geem ZW (2004) A new structural optimization method based on the harmony search algorithm. Comput Struct 82:781–798. https://doi.org/10.1016/j.compstruc.2004.01.002

    Article  Google Scholar 

  133. Ragsdell KM, Phillips DT (1976) Optimal design of a class of welded structures using geometric programming. J Manuf Sci Eng Trans ASME 98:1021–1025. https://doi.org/10.1115/1.3438995

    Article  Google Scholar 

  134. Cuevas E, Echavarría A (2013) An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation. Appl Intell. https://doi.org/10.1007/s10489-013-0458-0

    Article  Google Scholar 

  135. Shankar K, Eswaran P (2016) RGB-based secure share creation in visual cryptography using optimal elliptic curve cryptography technique. J Circuits Syst Comput 25:1650138. https://doi.org/10.1142/S0218126616501383

    Article  Google Scholar 

  136. Chickermane H, Gea HC (2002) Structural optimization using a new local approximation method. Int J Numer Methods Eng 39:829–846. https://doi.org/10.1002/(sici)1097-0207(19960315)39:5%3c829::aid-nme884%3e3.0.co;2-u

    Article  MathSciNet  MATH  Google Scholar 

  137. Zhao W, Zhang Z, Wang L (2020) Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications. Eng Appl Artif Intell 87:103300. https://doi.org/10.1016/j.engappai.2019.103300

    Article  Google Scholar 

  138. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  139. Niu B, Li L (2008) A novel PSO-DE-based hybrid algorithm for global optimization (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). Lect Notes Comput Sci 5227:156–163. https://doi.org/10.1007/978-3-540-85984-0_20

    Article  Google Scholar 

  140. Sadollah A, Eskandar H, Bahreininejad A, Kim JH (2015) Water cycle algorithm for solving multi-objective optimization problems. Soft Comput 19:2587–2603. https://doi.org/10.1007/s00500-014-1424-4

    Article  Google Scholar 

  141. Hafez AI, Zawbaa HM, Emary E, Hassanien AE (2016) Sine cosine optimization algorithm for feature selection.In: 2016 international symposium on innovations in intelligent systems and applications (INISTA). IEEE

  142. Sayed GI, Darwish A, Hassanien AE (2018) A new chaotic multi-verse optimization algorithm for solving engineering optimization problems. J Exp Theor Artif Intell 30:293–317. https://doi.org/10.1080/0952813X.2018.1430858

    Article  Google Scholar 

  143. Abderazek H, Ferhat D, Ivana A (2016) Adaptive mixed differential evolution algorithm for bi-objective tooth profile spur gear optimization. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-016-9523-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Dhawale.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhawale, D., Kamboj, V.K. & Anand, P. An effective solution to numerical and multi-disciplinary design optimization problems using chaotic slime mold algorithm. Engineering with Computers 38 (Suppl 4), 2739–2777 (2022). https://doi.org/10.1007/s00366-021-01409-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01409-4

Keywords