Skip to main content
Log in

On wave propagation of rotating viscoelastic nanobeams with temperature effects by using modified couple stress-based nonlocal Eringen’s theory

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In the current research, a comprehensive wave propagation analysis is performed on rotating viscoelastic nanobeams resting on Winkler-Pasternak foundations under thermal effects. Here, a novel non-classical mechanical model is developed to describe accurate wave propagation behavior for viscoelastic nanobeams. Employing nonlocal Eringen’s theory along with modified couple stress theory, our proposed model, for the first time, simultaneously takes into account particle interactions and size dependency effects in nanobeams during wave propagation. To capture both hardening and softening behaviors of materials during wave propagation, nonlocal Eringen’s theory and modified couple stress theories are merged. As a higher-order shear deformation theory, Reddy’s beam theory (RBT) is adopted to develop motion equations for nanobeams, which are then analytically solved to obtain numerical results. The results are illustrated for all torsional (TO), transverse (TA) and longitudinal (LA) wave propagation patterns are comprehensively discussed in detail. Finally, the effects of nonlocal parameter to length scale ratios, Winkler-Pasternak coefficients, thermal gradient, slenderness ratios and rotating velocity of viscoelastic nanobeam are investigated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. He F, Luo Z, Li L, Zhang Y, Guo S (2021) Structural similitudes for the vibration characteristics of concave thin-walled conical shell. Thin-Walled Struct 159:107218. https://doi.org/10.1016/j.tws.2020.107218

    Article  Google Scholar 

  2. Fattahi AM, Safaei B, Qin Z, Chu F (2021) Experimental studies on elastic properties of high density polyethylene-multi walled carbon nanotube nanocomposites. Steel Compos Struct 38:187. https://doi.org/10.12989/scs.2021.38.2.177

    Article  Google Scholar 

  3. Fan F, Safaei B, Sahmani S (2021) Buckling and postbuckling response of nonlocal strain gradient porous functionally graded micro/nano-plates via NURBS-based isogeometric analysis. Thin-Walled Struct 159:107231. https://doi.org/10.1016/j.tws.2020.107231

    Article  Google Scholar 

  4. Fan F, Sahmani S, Safaei B (2021) Isogeometric nonlinear oscillations of nonlocal strain gradient PFGM micro/nano-plates via NURBS-based formulation. Compos Struct 255:112969. https://doi.org/10.1016/j.compstruct.2020.112969

    Article  Google Scholar 

  5. Asmael M, Safaei B, Zeeshan Q, Zargar O, Nuhu AA (2021) Ultrasonic machining of carbon fiber–reinforced plastic composites: a review. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-021-06722-2

    Article  Google Scholar 

  6. Qiu Y, Luo Z, Ge X, Zhu Y, Gao Y (2020) Impact analysis of the multi-harmonic input splicing way based on the data-driven model. Int J Dyn Control 8:1181–1188. https://doi.org/10.1007/s40435-020-00700-4

    Article  MathSciNet  Google Scholar 

  7. Karimzadeh S, Safaei B, Jen TC (2021) Predicting phonon scattering and tunable thermal conductivity of 3D pillared graphene and boron nitride heterostructure. Int J Heat Mass Transf 172:121145. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121145

    Article  Google Scholar 

  8. Sahmani S, Safaei B (2021) Large-amplitude oscillations of composite conical nanoshells with in-plane heterogeneity including surface stress effect. Appl Math Model 89:1792–1813. https://doi.org/10.1016/j.apm.2020.08.039

    Article  MathSciNet  MATH  Google Scholar 

  9. Alhijazi M, Zeeshan Q, Qin Z, Safaei B, Asmael M (2020) Finite element analysis of natural fibers composites: a review. Nanotechnol Rev 9:853–875. https://doi.org/10.1515/ntrev-2020-0069

    Article  Google Scholar 

  10. Moradi-Dastjerdi R, Behdinan K, Safaei B, Qin Z (2020) Buckling behavior of porous CNT-reinforced plates integrated between active piezoelectric layers. Eng Struct 222:111141. https://doi.org/10.1016/j.engstruct.2020.111141

    Article  Google Scholar 

  11. Moradi-Dastjerdi R, Behdinan K (2021) Stress waves in thick porous graphene-reinforced cylinders under thermal gradient environments. Aerosp Sci Technol. https://doi.org/10.1016/j.ast.2020.106476

    Article  MATH  Google Scholar 

  12. Qiu Y, Zhu Y, Luo Z, Gao Y, Li Y (2021) The analysis and design of nonlinear vibration isolators under both displacement and force excitations. Arch Appl Mech. https://doi.org/10.1007/s00419-020-01875-0

    Article  Google Scholar 

  13. Safaei B (2020) The effect of embedding a porous core on the free vibration behavior of laminated composite plates. Steel Compos Struct 35:659–670. https://doi.org/10.12989/scs.2020.35.5.659

    Article  Google Scholar 

  14. Moradi‐Dastjerdi R, Behdinan K (2021) Layer arrangement impact on the electromechanical performance of a five-layer multifunctional smart sandwich plate. In: Advanced multifunctional lightweight aerostructures: design, development, and implementation, Wiley, pp 1–24. https://doi.org/10.1002/9781119756743.ch1.

  15. Moradi-Dastjerdi R, Behdinan K (2021) Free vibration response of smart sandwich plates with porous CNT-reinforced and piezoelectric layers. Appl Math Model. https://doi.org/10.1016/j.apm.2021.03.013

    Article  MathSciNet  MATH  Google Scholar 

  16. Moradi-Dastjerdi R, Behdinan K (2020) Thermo-electro-mechanical behavior of an advanced smart lightweight sandwich plate. Aerosp Sci Technol 106:106142. https://doi.org/10.1016/j.ast.2020.106142

    Article  Google Scholar 

  17. Zenkour AM, Sobhy M (2015) A simplified shear and normal deformations nonlocal theory for bending of nanobeams in thermal environment. Phys E Low-Dimens Syst Nanostruct 70:121–128. https://doi.org/10.1016/j.physe.2015.02.022

    Article  Google Scholar 

  18. Safaei B, Moradi-Dastjerdi R, Behdinan K, Qin Z, Chu F (2019) Thermoelastic behavior of sandwich plates with porous polymeric core and CNT clusters/polymer nanocomposite layers. Compos Struct. https://doi.org/10.1016/j.compstruct.2019.111209

    Article  Google Scholar 

  19. Sahmani S, Safaei B (2019) Nonlinear free vibrations of bi-directional functionally graded micro/nano-beams including nonlocal stress and microstructural strain gradient size effects. Thin-Walled Struct 140:342–356. https://doi.org/10.1016/j.tws.2019.03.045

    Article  Google Scholar 

  20. Safaei B, Naseradinmousavi P, Rahmani A (2016) Development of an accurate molecular mechanics model for buckling behavior of multi-walled carbon nanotubes under axial compression. J Mol Graph Model. https://doi.org/10.1016/j.jmgm.2016.02.001

    Article  Google Scholar 

  21. Sahmani S, Safaei B (2019) Nonlinear free vibrations of bi-directional functionally graded micro/nano-beams including nonlocal stress and microstructural strain gradient size effects. Thin-Walled Struct. https://doi.org/10.1016/j.tws.2019.03.045

    Article  Google Scholar 

  22. Karimiasl M, Ebrahimi F, Mahesh V (2020) On nonlinear vibration of sandwiched polymer—CNT/GPL-fiber nanocomposite nanoshells. Thin-Walled Struct 146:106431. https://doi.org/10.1016/j.tws.2019.106431

    Article  Google Scholar 

  23. Tang H, Li L, Hu Y, Meng W, Duan K (2019) Vibration of nonlocal strain gradient beams incorporating Poisson’s ratio and thickness effects. Thin-Walled Struct 137:377–391. https://doi.org/10.1016/j.tws.2019.01.027

    Article  Google Scholar 

  24. Safaei B, Ahmed NA, Fattahi AM (2019) Free vibration analysis of polyethylene/CNT plates. Eur Phys J Plus. https://doi.org/10.1140/epjp/i2019-12650-x

    Article  Google Scholar 

  25. Qin Z, Zhao S, Pang X, Safaei B, Chu F (2019) A unified solution for vibration analysis of laminated functionally graded shallow shells reinforced by graphene with general boundary conditions. Int J Mech Sci. https://doi.org/10.1016/j.ijmecsci.2019.105341

    Article  Google Scholar 

  26. Karami B, Shahsavari D, Janghorban M, Li L (2018) Wave dispersion of mounted graphene with initial stress. Thin-Walled Struct 122:102–111. https://doi.org/10.1016/j.tws.2017.10.004

    Article  Google Scholar 

  27. Karami B, Shahsavari D, Li L (2018) Hygrothermal wave propagation in viscoelastic graphene under in-plane magnetic field based on nonlocal strain gradient theory. Phys E Low-Dimens Syst Nanostruct 97:317–327. https://doi.org/10.1016/j.physe.2017.11.020

    Article  Google Scholar 

  28. Bakhtiari M, Tarkashvand A, Daneshjou K (2020) Plane-strain wave propagation of an impulse-excited fluid-filled functionally graded cylinder containing an internally clamped shell. Thin-Walled Struct 149:106482. https://doi.org/10.1016/j.tws.2019.106482

    Article  Google Scholar 

  29. Abad F, Rouzegar J (2019) Exact wave propagation analysis of moderately thick Levy-type plate with piezoelectric layers using spectral element method. Thin-Walled Struct 141:319–331. https://doi.org/10.1016/j.tws.2019.04.007

    Article  Google Scholar 

  30. Safaei B, Moradi-Dastjerdi R, Qin Z, Behdinan K, Chu F (2019) Determination of thermoelastic stress wave propagation in nanocomposite sandwich plates reinforced by clusters of carbon nanotubes. J Sandw Struct Mater. https://doi.org/10.1177/1099636219848282

    Article  Google Scholar 

  31. Mindlin R, Tiersten H (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11:415–448

    Article  MathSciNet  MATH  Google Scholar 

  32. Eringen AC (1972) Nonlocal polar elastic continua. Int J Eng Sci 10:1–16. https://doi.org/10.1016/0020-7225(72)90070-5

    Article  MathSciNet  MATH  Google Scholar 

  33. Eringen AC (2002) Nonlocal continuum field theories. In: Nonlocal continuum field theories, Springer Science & Business Media, pp 1–14. https://doi.org/10.1007/978-0-387-22643-9_1

  34. Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743. https://doi.org/10.1016/S0020-7683(02)00152-X

    Article  MATH  Google Scholar 

  35. Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508. https://doi.org/10.1016/S0022-5096(03)00053-X

    Article  MATH  Google Scholar 

  36. Fan F, Xu Y, Sahmani S, Safaei B (2020) Modified couple stress-based geometrically nonlinear oscillations of porous functionally graded microplates using NURBS-based isogeometric approach. Comput Methods Appl Mech Eng 372:113400. https://doi.org/10.1016/j.cma.2020.113400

    Article  MathSciNet  MATH  Google Scholar 

  37. Ebrahimi F, Barati MR (2018) Nonlocal strain gradient theory for damping vibration analysis of viscoelastic inhomogeneous nano-scale beams embedded in visco-Pasternak foundation. J Vib Control 24:2080–2095. https://doi.org/10.1177/1077546316678511

    Article  MathSciNet  Google Scholar 

  38. Yang Y, Wang J, Yu Y (2018) Wave propagation in fluid-filled single-walled carbon nanotube based on the nonlocal strain gradient theory. Acta Mech Solida Sin 31:484–492. https://doi.org/10.1007/s10338-018-0035-5

    Article  Google Scholar 

  39. Yang X, Sahmani S, Safaei B (2020) Postbuckling analysis of hydrostatic pressurized FGM microsized shells including strain gradient and stress-driven nonlocal effects. Eng Comput. https://doi.org/10.1007/s00366-019-00901-2

    Article  Google Scholar 

  40. Xie B, Sahmani S, Safaei B, Xu B (2020) Nonlinear secondary resonance of FG porous silicon nanobeams under periodic hard excitations based on surface elasticity theory. Eng Comput. https://doi.org/10.1007/s00366-019-00931-w

    Article  Google Scholar 

  41. Ebrahimi F, Habibi M, Safarpour H (2019) On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell. Eng Comput 35:1375–1389. https://doi.org/10.1007/s00366-018-0669-4

    Article  Google Scholar 

  42. Al-Furjan MSH, Oyarhossein MA, Habibi M, Safarpour H, Jung DW (2020) Wave propagation simulation in an electrically open shell reinforced with multi-phase nanocomposites. Eng Comput 1:3. https://doi.org/10.1007/s00366-020-01167-9

    Article  Google Scholar 

  43. Zenkour AM, Sobhy M (2021) Axial magnetic field effect on wave propagation in bi-layer FG graphene platelet-reinforced nanobeams. Eng Comput 1:3. https://doi.org/10.1007/s00366-020-01224-3

    Article  Google Scholar 

  44. Kocatürk T, Akbaş ŞD (2013) Wave propagation in a microbeam based on the modified couple stress theory. Struct Eng Mech 46:417–431. https://doi.org/10.12989/sem.2013.46.3.417

    Article  Google Scholar 

  45. Lim CW, Zhang G, Reddy JN (2015) A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids 78:298–313. https://doi.org/10.1016/j.jmps.2015.02.001

    Article  MathSciNet  MATH  Google Scholar 

  46. Li L, Hu Y, Ling L (2015) Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory. Compos Struct 133:1079–1092. https://doi.org/10.1016/j.compstruct.2015.08.014

    Article  Google Scholar 

  47. Ma LH, Ke LL, Wang YZ, Wang YS (2017) Wave propagation in magneto-electro-elastic nanobeams via two nonlocal beam models. Phys E Low-Dimens Syst Nanostruct 86:253–261. https://doi.org/10.1016/j.physe.2016.10.036

    Article  Google Scholar 

  48. Arefi M, Zenkour AM (2017) Analysis of wave propagation in a functionally graded nanobeam resting on visco-Pasternak’s foundation. Theor Appl Mech Lett 7:145–151. https://doi.org/10.1016/j.taml.2017.05.003

    Article  Google Scholar 

  49. Barati MR, Zenkour A (2017) A general bi-Helmholtz nonlocal strain-gradient elasticity for wave propagation in nanoporous graded double-nanobeam systems on elastic substrate. Compos Struct 168:885–892. https://doi.org/10.1016/j.compstruct.2017.02.090

    Article  Google Scholar 

  50. Narendar S, Gopalakrishnan S (2011) Nonlocal wave propagation in rotating nanotube. Results Phys 1:17–25. https://doi.org/10.1016/j.rinp.2011.06.002

    Article  Google Scholar 

  51. Sobhy M, Zenkour AM (2020) The modified couple stress model for bending of normal deformable viscoelastic nanobeams resting on visco-Pasternak foundations. Mech Adv Mater Struct 27:525–538. https://doi.org/10.1080/15376494.2018.1482579

    Article  Google Scholar 

  52. Zenkour AM, El-Shahrany HD (2020) Hygrothermal effect on vibration of magnetostrictive viscoelastic sandwich plates supported by Pasternak’s foundations. Thin-Walled Struct 157:107007. https://doi.org/10.1016/j.tws.2020.107007

    Article  Google Scholar 

  53. Zenkour AM, El-Shahrany HD (2020) Vibration suppression of magnetostrictive laminated beams resting on viscoelastic foundation. Appl Math Mech 41:1269–1286. https://doi.org/10.1007/s10483-020-2635-7

    Article  MathSciNet  MATH  Google Scholar 

  54. Ebrahimi F, Haghi P (2017) Wave propagation analysis of rotating thermoelastically-actuated nanobeams based on nonlocal strain gradient theory. Acta Mech Solida Sin 30:647–657. https://doi.org/10.1016/j.camss.2017.09.007

    Article  Google Scholar 

  55. Zeighampour H, Beni YT (2017) Size dependent analysis of wave propagation in functionally graded composite cylindrical microshell reinforced by carbon nanotube. Compos Struct 179:124–131. https://doi.org/10.1016/j.compstruct.2017.07.071

    Article  Google Scholar 

  56. Ebrahimi F, Dabbagh A (2017) Wave propagation analysis of embedded nanoplates based on a nonlocal strain gradient-based surface piezoelectricity theory. Eur Phys J Plus 132:1–14. https://doi.org/10.1140/EPJP/I2017-11694-2

    Article  Google Scholar 

  57. Shahsavari D, Karami B, Li L (2018) A high-order gradient model for wave propagation analysis of porous FG nanoplates. Steel Compos Struct 29:53–66. https://doi.org/10.12989/scs.2018.29.1.053

    Article  Google Scholar 

  58. Barati MR (2018) Temperature and porosity effects on wave propagation in nanobeams using bi-Helmholtz nonlocal strain-gradient elasticity. Eur Phys J Plus 133:170. https://doi.org/10.1140/EPJP/I2018-11993-0

    Article  Google Scholar 

  59. Liu H, Lv Z (2018) Uncertain material properties on wave dispersion behaviors of smart magneto-electro-elastic nanobeams. Compos Struct 202:615–624. https://doi.org/10.1016/j.compstruct.2018.03.024

    Article  Google Scholar 

  60. Amiri A, Talebitooti R, Li L (2018) Wave propagation in viscous-fluid-conveying piezoelectric nanotubes considering surface stress effects and Knudsen number based on nonlocal strain gradient theory. Eur Phys J Plus 133:1–17. https://doi.org/10.1140/EPJP/I2018-12077-Y

    Article  Google Scholar 

  61. Ma LH, Ke LL, Wang YZ, Wang YS (2018) Wave propagation analysis of piezoelectric nanoplates based on the nonlocal theory. Int J Struct Stab Dyn. https://doi.org/10.1142/S0219455418500608

    Article  MathSciNet  Google Scholar 

  62. Karami B, Shahsavari D, Li L (2018) Temperature-dependent flexural wave propagation in nanoplate-type porous heterogenous material subjected to in-plane magnetic field. J Therm Stress 41:483–499. https://doi.org/10.1080/01495739.2017.1393781

    Article  Google Scholar 

  63. She GL, Yuan FG, Ren YR (2018) On wave propagation of porous nanotubes. Int J Eng Sci 130:62–74. https://doi.org/10.1016/j.ijengsci.2018.05.002

    Article  MathSciNet  MATH  Google Scholar 

  64. She G-L, Yan K-M, Zhang Y-L, Liu H-B, Ren Y-R (2018) Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory. Eur Phys J Plus 133:1–9. https://doi.org/10.1140/EPJP/I2018-12196-5

    Article  Google Scholar 

  65. Zeighampour H, Tadi Beni Y, Botshekanan Dehkordi M (2018) Wave propagation in viscoelastic thin cylindrical nanoshell resting on a visco-Pasternak foundation based on nonlocal strain gradient theory. Thin-Walled Struct 122:378–386. https://doi.org/10.1016/j.tws.2017.10.037

    Article  Google Scholar 

  66. Ebrahimi F, Dabbagh A (2019) Wave dispersion characteristics of heterogeneous nanoscale beams via a novel porosity-based homogenization scheme. Eur Phys J Plus 134:1–8. https://doi.org/10.1140/EPJP/I2019-12510-9

    Article  Google Scholar 

  67. Masoumi A, Amiri A, Talebitooti R (2019) Flexoelectric effects on wave propagation responses of piezoelectric nanobeams via nonlocal strain gradient higher order beam model. Mater Res Express 6:1050d5. https://doi.org/10.1088/2053-1591/ab421b

    Article  Google Scholar 

  68. Karami B, Janghorban M (2019) A new size-dependent shear deformation theory for wave propagation analysis of triclinic nanobeams. Steel Compos Struct 32:213–223. https://doi.org/10.12989/scs.2019.32.2.213

    Article  Google Scholar 

  69. Wang YQ, Liang C (2019) Wave propagation characteristics in nanoporous metal foam nanobeams. Results Phys 12:287–297. https://doi.org/10.1016/j.rinp.2018.11.080

    Article  Google Scholar 

  70. Sobhy M, Zenkour AM (2019) Wave propagation in magneto-porosity FG bi-layer nanoplates based on a novel quasi-3D refined plate theory. Waves Random Complex Media. https://doi.org/10.1080/17455030.2019.1634853

    Article  MATH  Google Scholar 

  71. Abouelregal AE, Zenkour AM (2019) Vibration of FG viscoelastic nanobeams due to a periodic heat flux via fractional derivative model. J Comput Appl Mech 50:148–156. https://doi.org/10.22059/jcamech.2019.277115.367

    Article  Google Scholar 

  72. Arani AG, Pourjamshidian M, Arefi M, Ghorbanpour Arani MR (2019) Application of nonlocal elasticity theory on the wave propagation of flexoelectric functionally graded (FG) timoshenko nano-beams considering surface effects and residual surface stress. Smart Struct Syst 23:141–153. https://doi.org/10.12989/sss.2019.23.2.141

    Article  Google Scholar 

  73. Cao DY, Wang YQ (2020) Wave dispersion in viscoelastic lipid nanotubes conveying viscous protein solution. Eur Phys J Plus 135:1–14. https://doi.org/10.1140/EPJP/S13360-019-00074-3

    Article  Google Scholar 

  74. Faroughi S, Rahmani A, Friswell MI (2020) On wave propagation in two-dimensional functionally graded porous rotating nano-beams using a general nonlocal higher-order beam model. Appl Math Model 80:169–190. https://doi.org/10.1016/j.apm.2019.11.040

    Article  MathSciNet  MATH  Google Scholar 

  75. Attia MA, Mahmoud FF (2016) Modeling and analysis of nanobeams based on nonlocal-couple stress elasticity and surface energy theories. Int J Mech Sci 105:126–134. https://doi.org/10.1016/j.ijmecsci.2015.11.002

    Article  Google Scholar 

  76. Sourki R, Hosseini SA (2017) Coupling effects of nonlocal and modified couple stress theories incorporating surface energy on analytical transverse vibration of a weakened nanobeam. Eur Phys J Plus 132:1–14. https://doi.org/10.1140/epjp/i2017-11458-0

    Article  Google Scholar 

  77. Ebrahimi F, Barati MR (2018) Stability analysis of porous multi-phase nanocrystalline nonlocal beams based on a general higher-order couple-stress beam model. Struct Eng Mech 65:465–476. https://doi.org/10.12989/sem.2018.65.4.465

    Article  Google Scholar 

  78. Abouelregal AE, Mohammed WW (2020) Effects of nonlocal thermoelasticity on nanoscale beams based on couple stress theory. Math Methods Appl Sci. https://doi.org/10.1002/mma.6764

    Article  Google Scholar 

  79. Ebrahimi F, Barati MR (2018) A modified nonlocal couple stress-based beam model for vibration analysis of higher-order FG nanobeams. Mech Adv Mater Struct 25:1121–1132. https://doi.org/10.1080/15376494.2017.1365979

    Article  Google Scholar 

  80. Shariati A, Barati MR, Ebrahimi F, Toghroli A (2020) Investigation of microstructure and surface effects on vibrational characteristics of nanobeams based on nonlocal couple stress theory. Adv Nano Res 8:191–202. https://doi.org/10.12989/anr.2020.8.3.191

    Article  Google Scholar 

  81. Ramezani SR, Mojra A (2020) Stability analysis of conveying-nanofluid CNT under magnetic field based on nonlocal couple stress theory and fluid-structure interaction. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2020.1851254

    Article  Google Scholar 

  82. Attar F, Khordad R, Zarifi A, Modabberasl A (2021) Application of nonlocal modified couple stress to study of functionally graded piezoelectric plates. Phys B Condens Matter 600:412623. https://doi.org/10.1016/j.physb.2020.412623

    Article  Google Scholar 

  83. Reddy JN (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45:288–307. https://doi.org/10.1016/j.ijengsci.2007.04.004

    Article  MATH  Google Scholar 

  84. Ebrahimi F, Barati MR, Haghi P (2018) Wave propagation analysis of size-dependent rotating inhomogeneous nanobeams based on nonlocal elasticity theory. J Vib Control 24:3809–3818. https://doi.org/10.1177/1077546317711537

    Article  MathSciNet  Google Scholar 

  85. Gopalakrishnan S, Narendar S (2013) Wave propagation in nanostructures: nonlocal continuum mechanics formulations. Spring Sci Bus Media. https://doi.org/10.1007/978-3-319-01032-8_3

    Article  Google Scholar 

  86. Gopalakrishnan S (2016) Wave propagation in materials and structures. CRC Press

    Book  MATH  Google Scholar 

  87. Eltaher MA, Khater ME, Emam SA (2016) A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Appl Math Model 40:4109–4128. https://doi.org/10.1016/j.apm.2015.11.026

    Article  MathSciNet  MATH  Google Scholar 

  88. Ebrahimi F, Dabbagh A (2019) Wave propagation analysis of smart nanostructures. CRC Press

    Book  Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by National Natural Science Foundation of China (Grant no. 11972204). The authors are grateful for their supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arash Rahmani or Babak Safaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, A., Safaei, B. & Qin, Z. On wave propagation of rotating viscoelastic nanobeams with temperature effects by using modified couple stress-based nonlocal Eringen’s theory. Engineering with Computers 38 (Suppl 4), 2681–2701 (2022). https://doi.org/10.1007/s00366-021-01429-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01429-0

Keywords

Profiles

  1. Babak Safaei