Skip to main content
Log in

Numerical simulation based on a combination of finite-element method and proper orthogonal decomposition to prevent the groundwater contamination

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, the coupled advection-dominated diffusion-reaction equations which arise in the prevention of groundwater contamination problem are approximated by usual finite element method (FEM). It is clear that by increasing the number of elements to improve computational accuracy, we have to incur a lot of costs. The main presented idea is to reduce the used CPU time for employing the finite-element method by combining that with a technique which reduces the dimension of the problem. To this end, we apply the proper orthogonal decomposition (POD) technique to the usual FEM for the prevention of groundwater contamination problem to reduce CPU time with acceptable accuracy. Numerical examples are provided to illustrate efficiency and validity of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abbaszadeh M, Dehghan M, Khodadadian A, Heitzinger C (2020) Analysis and application of the interpolating element free Galerkin (IEFG) method to simulate the prevention of groundwater contamination with application in fluid flow. J Comput Appl Math 368:112453

    Article  MathSciNet  MATH  Google Scholar 

  2. Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech 25(1):539–575

    Article  MathSciNet  Google Scholar 

  3. Białecki RA, Kassab AJ, Fic A (2005) Proper orthogonal decomposition and modal analysis for acceleration of transient FEM thermal analysis. Int J Numer Method Eng 62(6):774–797

    Article  MATH  Google Scholar 

  4. Budinski L, Fabian J, Stipić M (2015) Lattice Boltzmann method for groundwater flow in non-orthogonal structured lattices. Comput Math Appl 70(10):2601–2615

    Article  MathSciNet  MATH  Google Scholar 

  5. Buljak V (2011) Inverse analyses with model reduction. Proper orthogonal decomposition in structural mechanics. Springer, Berlin

    MATH  Google Scholar 

  6. Clough RW (1960) The finite element method in plane stress analysis. In: Proceedings of the Second ASCE Conference on Electronic Computation, Pittsburgh Pennsylvania.

  7. Courant R (1943) Variational methods for the solution of problems of equilibrium and vibrations. Bull Am Math Soc 49(1):1–23

    Article  MathSciNet  MATH  Google Scholar 

  8. Dacunto B, Parente F, Urciuoli G (2007) Numerical models for 2D free boundary analysis of groundwater in slopes stabilized by drain trenches. Comput Math Appl 53(10):1615–1626

    Article  MathSciNet  MATH  Google Scholar 

  9. Dehghan M, Abbaszadeh M (2018) A combination of proper orthogonal decomposition-discrete empirical interpolation method (POD-DEIM) and meshless local RBF-DQ approach for prevention of groundwater contamination. Comput Math Appl 75(4):1390–1412

    Article  MathSciNet  MATH  Google Scholar 

  10. Dehghan M, Abbaszadeh M (2016) Proper orthogonal decomposition variational multiscale element free Galerkin (POD-VMEFG) meshless method for solving incompressible Navier-Stokes equation. Comput Methods Appl Mech Eng 311:856–888

    Article  MathSciNet  MATH  Google Scholar 

  11. Dhawan S, Kapoor S, Kumar S (2012) Numerical method for advection diffusion equation using FEM and B-splines. J Comput Sci 3(5):429–437

    Article  Google Scholar 

  12. Ebrahimijahan A, Dehghan M, Abbaszadeh M (2020) Compact local integrated radial basis functions(Integrated RBF)method for solving system of non-linear advection-diffusion-reaction equations to prevent the groundwater contamination. Eng Anal Bound Elem 121:50–64

    Article  MathSciNet  MATH  Google Scholar 

  13. Gharibi Z, Dehghan M (2021) Convergence analysis of weak Galerkin flux-based mixed finite element method for solving singularly perturbed convection-diffusion-reaction problem. Appli Numer Math 163:303–316

    Article  MathSciNet  MATH  Google Scholar 

  14. Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24(6):417–441

    Article  MATH  Google Scholar 

  15. Ilati M, Dehghan M (2016) Remediation of contaminated groundwater by meshless local weak forms. Comput Math Appl 72(9):2408–2416

    Article  MathSciNet  MATH  Google Scholar 

  16. Karhunen K (1946) Uber linear methoden fur wahrscheiniogkeitsrechnung. Ann Acad Sci Fenn Ser Al Math Phys 37:3–79

    Google Scholar 

  17. Kerschen G, Poncelet F, Golinval JC (2007) Physical interpretation of independent component analysis in structural dynamics. Mech Syst Signal Process 21(4):1561–1575

    Article  Google Scholar 

  18. Kobus HE, Kinzelbach W (1989) Contaminant transport in groundwater: proceedings of an international symposium, vol 3. CRC Press, London

    Google Scholar 

  19. Kosambi DD (1943) Statistics in function space. J Indian Math Soc 7:76–88

    MathSciNet  MATH  Google Scholar 

  20. Li H, Luo Z, Chen J (2011) Numerical simulation based on POD for two-dimensional solute transport problems. Appl Math Model 35(5):2489–2498

    Article  MathSciNet  MATH  Google Scholar 

  21. Li J, Chen YT (2008) Computational partial differential equations using MATLAB. Taylor and Francis, London

    Book  Google Scholar 

  22. Li KQ, Li DQ, Liu Y (2020) Meso-scale investigations on the effective thermal conductivity of multi-phase materials using the finite element method. Int J Heat Mass Transf 151:119383

    Article  Google Scholar 

  23. Liu W, Huang J, Long X (2015) Coupled nonlinear advection-diffusion-reaction system for prevention of groundwater contamination by modified upwind finite volume element method. Comput Math Appl 69(6):477–493

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu Y, Du Y, Li H, Liu F, Wang Y (2019) Some second-order schemes combined with finite element method for nonlinear fractional cable equation. Numer Algorithms 80(2):533–555

    Article  MathSciNet  MATH  Google Scholar 

  25. Loeve MM (1955) Probabilty theoiry. Van Nostrand, Princeton

    Google Scholar 

  26. Luo Z, Yanjie Z, Xiaozhong Y (2009) A reduced finite element formulation based on proper orthogonal decomposition for Burgers equation. Appl Numer Math 59(8):1933–1946

    Article  MathSciNet  MATH  Google Scholar 

  27. Lumley JL (1970) Stochastic tools in turbulence. Academic, New York

    MATH  Google Scholar 

  28. Ly HV, Tran HT (2001) Modeling and control of physical processes using proper orthogonal decomposition. Math Comput Model 33(1–3):223–236

    Article  MATH  Google Scholar 

  29. Obukhov AM (1954) Statistical description of continuous fields. Trudy Geophys Inst Akad Nauk SSSR 24(151):3–42

    MathSciNet  Google Scholar 

  30. Pearson K (1901) On lines and planes of closest fit to systems of points in space. Lon Edinb Dublin Philos Mag J Sci 2(11):559–572

    Article  MATH  Google Scholar 

  31. Pougachev VS (1953) General theory of the correlations of random functions, Izv Akad Nauk SSSR Ser Mat 17:401–402

    MathSciNet  Google Scholar 

  32. Ruotolo R, Surace C (1999) Using SVD to detect damage in structures with different operational conditions. J Sound Vib 226(3):425–439

    Article  Google Scholar 

  33. Shinde V, Longatte E, Baj F, Hoarau Y, Braza M (2019) Galerkin-free model reduction for fluid-structure interaction using proper orthogonal decomposition. J Comput Phys 396:579–595

    Article  MathSciNet  MATH  Google Scholar 

  34. Shoushtari SMHJ, Cartwright N, Perrochet P, Nielsen P (2017) Two-dimensional vertical moisture-pressure dynamics above groundwater waves: sand flume experiments and modelling. J Hydrol 544:467–478

    Article  Google Scholar 

  35. Sirovich L, Kirby M (1987) Low-dimensional procedure for the characterization of human faces. J Opt Soc Am 4(3):519–524

    Article  Google Scholar 

  36. Tambue A (2016) An exponential integrator for finite volume discretization of a reaction-advection-diffusion equation. Comput Math Appl 71(9):1875–1897

    Article  MathSciNet  MATH  Google Scholar 

  37. Tang D, Kholodar D, Juang JN, Dowell EH (2001) System identification and proper orthogonal decomposition method applied to unsteady aerodynamics. AIAA J 39(8):1569–1576

    Article  Google Scholar 

  38. Turner MJ, Clough RW, Martin HC, Topp LJ (1956) Stiffness and deflection analysis of complex structures. J Aerosol Sci 23(9):805–823

    MATH  Google Scholar 

  39. Volkwein S (2013) Proper orthogonal decomposition: theory and reduced-order modelling. Lect Notes Univ Konstanz 4(4):1–29

    Google Scholar 

  40. Wang X, Huo Z, Feng S, Guo P, Guan H (2016) Estimating groundwater evapotranspiration from irrigated cropland incorporating root zone soil texture and moisture dynamics. J Hydrol 543:501–509

    Article  Google Scholar 

  41. Wen C, Liu Y, Yin B, Li H, Wang J (2021) Fast second-order time two-mesh mixed finite element method for a nonlinear distributed-order sub-diffusion model. Numer Algorithms. https://doi.org/10.1007/s11075-020-01048-8

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang X, Xiang H (2015) A fast meshless method based on proper orthogonal decomposition for the transient heat conduction problems. Int J Heat Mass Transf 84:729–739

    Article  Google Scholar 

  43. Zhang W, Yang H, Fang L, Cui P, Fang Z (2017) Study on heat transfer of pile foundation ground heat exchanger with three-dimensional groundwater seepage. Int J Heat Mass Transf 105:58–66

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for their constructive comments and suggestions that improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Dehghan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghan, M., Hooshyarfarzin, B. & Abbaszadeh, M. Numerical simulation based on a combination of finite-element method and proper orthogonal decomposition to prevent the groundwater contamination. Engineering with Computers 38 (Suppl 4), 3445–3461 (2022). https://doi.org/10.1007/s00366-021-01439-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01439-y

Keywords

Mathematics Subject Classification

Navigation